Trigonometrical Ratios of (270° + θ)

What are the relations among all the trigonometrical ratios of (270° + θ)?

In trigonometrical ratios of angles (270° + θ) we will find the relation between all six trigonometrical ratios.

We know that,

sin (90° + θ) = cos θ

cos (90° + θ) = - sin θ

tan (90° + θ) = - cot θ

csc (90° + θ) = sec θ

sec ( 90° + θ) = - csc θ

cot ( 90° + θ) = - tan θ

and

sin (180° + θ) = - sin θ

cos (180° + θ) = - cos θ

tan (180° + θ) = tan θ

csc (180° + θ) = -csc θ

sec (180° + θ) = - sec θ

cot (180° + θ) = cot θ

Using the above proved results we will prove all six trigonometrical ratios of (180° - θ).

sin (270° + θ) = sin [1800 + 90° + θ]

                   = sin [1800 + (90° + θ)]    

                   = - sin (90° + θ), [since sin (180° + θ) = - sin θ]

Therefore, sin (270° + θ) = - cos θ, [since sin (90° + θ) = cos θ]

 

cos (270° + θ) = cos [1800 + 90° + θ]

                    = cos [I 800 + (90° + θ)]

                    = - cos (90° + θ), [since cos (180° + θ) = - cos θ]

Therefore, cos (270° + θ) = sin θ, [since cos (90° + θ) = - sin θ]

 

tan ( 270° + θ) = tan [1800 + 90° + θ]

                     = tan [180° + (90° + θ)]

                     = tan (90° + θ), [since tan (180° + θ) = tan θ]

Therefore, tan (270° + θ) = - cot θ, [since tan (90° + θ) = - cot θ]

 

csc (270° + θ) = \(\frac{1}{sin (270° + \Theta)}\)

                    = \(\frac{1}{- cos \Theta}\), [since sin (270° + θ) = - cos θ]

Therefore, csc (270° + θ) = - sec θ;

 

sec (270° + θ) =\(\frac{1}{cos (270° + \Theta)}\)

                    = \(\frac{1}{sin \Theta}\), [since cos (270° + θ) = sin θ]

Therefore, sec (270° + θ) = csc θ

and

cot (270° + θ) = \(\frac{1}{tan (270° + \Theta)}\)

                    = \(\frac{1}{- cot \Theta}\), [since tan (270° + θ) =  - cot θ]

Therefore, cot (270° + θ) = - tan θ.


Solved examples:

1. Find the value of csc 315°.

Solution:

csc 315° = sec (270 + 45)°

             = - sec 45°; since we know, csc (270° + θ) = - sec θ

             = - √2


2. Find the value of cos 330°.

Solution:

cos 330° = cos (270 + 60)°

             = sin 60°; since we know, cos (270° + θ) = sin θ

             = \(\frac{√3}{2}\)

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of (270° + θ) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 20, 24 01:00 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  3. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  4. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 18, 24 02:23 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More