Trigonometrical Ratios of (180° + θ)

What are the relations among all the trigonometrical ratios of (180° + θ)?

In trigonometrical ratios of angles (180° + θ) we will find the relation between all six trigonometrical ratios.

We know that,

sin (90° + θ) = cos θ

cos (90° + θ) = - sin θ

tan (90° + θ) = - cot θ

csc (90° + θ) = sec θ

sec ( 90° + θ) = - csc θ

cot ( 90° + θ) = - tan θ

Using the above proved results we will prove all six trigonometrical ratios of (180° + θ).

sin (180° + θ) = sin (90° + 90° + θ)

                    = sin [90° + (90° + θ)]

                    = cos (90° + θ), [since sin (90° + θ) = cos θ]

Therefore, sin (180° + θ) = - sin θ, [since cos (90° + θ) = - sin θ]

 

cos (180° + θ) = cos (90° + 90° + θ)

                     = cos [90° + (90° + θ)]

                     = - sin (90° + θ), [since cos (90° + θ) = -sin θ]

Therefore, cos (180° + θ) = - cos θ,  [since sin (90° + θ) = cos θ]

 

tan (180° + θ) = cos (90° + 90° + θ)

                    = tan [90° + (90° + θ)]

                    = - cot (90° + θ), [since tan (90° + θ) = -cot θ]

Therefore, tan (180° + θ) = tan θ, [since cot (90° + θ) = -tan θ]


csc (180° + θ) = \(\frac{1}{sin (180° + \Theta)}\)

                     = \(\frac{1}{- sin \Theta}\), [since sin (180° + θ) = -sin θ]

Therefore, csc (180° + θ) = - csc θ;


sec (180° + θ) = \(\frac{1}{cos (180° + \Theta)}\)

                     = \(\frac{1}{- cos \Theta}\), [since cos (180° + θ) = - cos θ]

Therefore, sec (180° + θ) = - sec θ

and

cot (180° + θ) = \(\frac{1}{tan (180° + \Theta)}\)

                    = \(\frac{1}{tan \Theta}\), [since tan (180° + θ) =  tan θ]

Therefore, cot (180° + θ) =  cot θ


Solved example:

1. Find the value of sin 225°.

Solution:

sin (225)° = sin (180 + 45)°

              = - sin 45°; since we know sin (180° + θ) = - sin θ

              = - \(\frac{1}{√2}\)


2. Find the value of sec 210°.

Solution:

sec (210)° = sec (180 + 30)°

              = - sec 30°; since we know sec (180° + θ) = - sec θ

              = - \(\frac{1}{√2}\)


3. Find the value of tan 240°.

Solution:

tan (240)° = tan (180 + 60)°

              = tan 60°; since we know tan (180° + θ) = tan θ

              = √3

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of (180° + θ) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 09:48 AM

    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  2. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More

  3. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Jan 12, 25 08:41 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  4. 3rd Grade Addition Worksheet | 3-Digit Addition | Word Problems | Ans

    Jan 11, 25 01:06 PM

    3rd Grade Addition Games
    In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping…

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More