Trigonometrical Identity

Definition of trigonometrical identity:

An equation which is true for all values of the variable involved is called an identity. An equation which involves trigonometric ratios of an angle and is true for all the values of the angle is called trigonometrical identities.

When the solutions of any trigonometric ratio problems represent the same expression in the L.H.S. and R.H.S. and the relation is satisfied for all the values of θ then such relation is called a trigonometrical identity.

Mutual relations among the trigonometrical ratios are generally used to establish the equality of such trigonometrical identities.


To solve different types of trignometrical identity follow the formula:

sin θ ∙ csc θ = 1   csc θ = 1/sin θ

cos θ ∙ sec θ = 1 sec θ = 1/cos θ 

 tan θ ∙ cot θ = 1  cot θ = 1/tan θ 

 tan θ = sin θ/cos θ                 

 cot θ = cos θ/sin θ

sin2 θ implies (sin θ)2
similarly, tan3 θ means (tan θ)3 etc.

sin2 θ + cos2 θ = 1

cos2 θ = 1 - sin2 θ
sin2 θ = 1 - cos2 θ

sec2 θ = 1 + tan2 θ
sec2 θ - tan2 θ = 1
tan2 θ = sec2 θ - 1

csc2 θ = 1 + cot2 θ
csc2 θ - 1 = cot2 θ
csc2 θ - cot2 θ = 1

The trigonometrical ratios of a positive acute angle θ are always non-negative and

(i) sin θ and cos θ can never be greater than 1;

(ii) sec θ and csc θ can never be less than 1;

(iii) tan θ and cot θ can have any value.


Worked-out problems on trigonometric identity:

1. Proof the identity:

tan2 θ – (1/cos2 θ) + 1 = 0

Solution:

L.H.S = tan2 θ – (1/cos2 θ) + 1

= tan2 θ - sec2 θ + 1 [since, 1/cos θ = sec θ]

= tan2 θ – (1 + tan2 θ) +1 [since, sec2 θ = 1 + tan2 θ]

= tan2 θ – 1 – tan2 θ + 1

= 0 = R.H.S. Proved


2. Verify that:

1/(sin θ + cos θ) + 1/(sin θ - cos θ) = 2 sin θ/(1 – 2 cos2 θ)

Solution:

L.H.S = 1/(sin θ + cos θ) + 1/(sin θ - cos θ)

= [(sin θ - cos θ) + (sin θ + cos θ)]/(sin θ + cos θ)(sin θ - cos θ)

= [sin θ - cos θ + sin θ + cos θ]/(sin2 θ - cos2 θ)

= 2 sin θ/[(1 - cos2 θ) - cos2 θ] [since, sin2 θ = 1 - cos2 θ]

= 2 sin θ/[1 - cos2 θ - cos2 θ]

= 2 sin θ/[1 – 2 cos2 θ] = R.H.S. Proved


3. Prove that:

sec2 θ + csc2 θ = sec2 θ ∙ csc2 θ

Solution:

L.H.S. = sec2 θ + csc2 θ

= 1/cos2 θ + 1/sin2 θ [since, sec θ = 1/cos θ and csc θ = 1/sin θ]

= (sin2 θ + cos2 θ)/(cos2 θ sin2 θ)

= 1/cos2 θ ∙ sin2 θ [since, sin2 θ + cos2 θ = 1]

= 1/cos2 θ ∙ 1/sin2 θ

= sec2 θ ∙ csc2 θ = R.H.S. Proved




More examples on trigonometrical identity are explained below. To proof the identities step-by-step follow the above trig formulas.

4. Prove the identity:

cos θ/(1 + sin θ) = (1 + cos θ - sin θ)/(1 + cos θ + sin θ)

Solution:

R. H. S. = (1 + cos θ - sin θ)/(1 + cos θ + sin θ)

= {(1 + cos θ - sin θ) (1 + cos θ + sin θ)}/{(1+ cos θ + sin θ) (1 + cos θ + sin θ)} [multiplying both numerator and denominator by (1 + cos θ + sin θ)]

= {(1 + cos θ)2 - sin2 θ}/(1 + cos θ + sin θ)2

= (1 + cos2 θ + 2 cos θ - sin2 θ)/{(1 + cos θ)2 + 2 ∙ (1 + cos θ) sin θ + sin2 θ}

= (cos2 θ + 2 cos θ + 1 - sin2 θ)/{1 + cos2 θ + 2 cos θ + 2 ∙ (1 + cos θ) ∙ sin θ + sin2 θ}

= (cos2 θ + 2 cos θ + cos2 θ)/{2 + 2 cos θ + 2 ∙ (1 + cos θ) ∙ sin θ} [since, sin2 θ + cos2 θ = 1 and 1 - sin2 θ = cos2 θ]

= {2 cos θ (1 + cos θ)}/{2 (1 + cos θ)(1 + sin θ)}

= cos θ/(1 + sin θ) = L.H.S. Proved


5. Verify the trigonometrical identity:

(cot θ + csc θ – 1)/(cot θ - csc θ + 1) = (1 + cos θ)/sin θ

L.H.S. = (cot θ + csc θ – 1)/(cot θ - csc θ + 1)

= {cot θ + csc θ - (csc2 θ - cot2 θ)}/(cot θ - csc θ + 1)

[csc2 θ = 1 + cot2 θ ⇒ csc2 θ - cot2 θ = 1]

= {(cot θ + csc θ) - (csc θ + cot θ) (csc θ - cot θ)}/(cot θ - csc θ + 1)

= {(cot θ + csc θ) (1 - csc θ + cot θ)}/ (1 - csc θ + cot θ)

= cot θ + csc θ

= (cos θ/sin θ) + (1/sin θ)

= (1 + cos θ)/sin θ = R.H.S. Proved

Trigonometric Functions


10th Grade Math

From Trigonometrical Identity to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 10, 25 03:02 PM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  2. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More

  3. Addition of 10, 100 and 1000 | Adding 10 | Adding 100 | Adding 1000

    Jan 10, 25 01:20 AM

    Adding 10
    Here we will learn Addition of 10, 100 and 1000 with the help of different examples.

    Read More

  4. Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

    Jan 10, 25 12:10 AM

    Estimating the Sum
    We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 09, 25 10:07 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More