Trigonometrical Identity

Definition of trigonometrical identity:

An equation which is true for all values of the variable involved is called an identity. An equation which involves trigonometric ratios of an angle and is true for all the values of the angle is called trigonometrical identities.

When the solutions of any trigonometric ratio problems represent the same expression in the L.H.S. and R.H.S. and the relation is satisfied for all the values of θ then such relation is called a trigonometrical identity.

Mutual relations among the trigonometrical ratios are generally used to establish the equality of such trigonometrical identities.


To solve different types of trignometrical identity follow the formula:

sin θ ∙ csc θ = 1   csc θ = 1/sin θ

cos θ ∙ sec θ = 1 sec θ = 1/cos θ 

 tan θ ∙ cot θ = 1  cot θ = 1/tan θ 

 tan θ = sin θ/cos θ                 

 cot θ = cos θ/sin θ

sin2 θ implies (sin θ)2
similarly, tan3 θ means (tan θ)3 etc.

sin2 θ + cos2 θ = 1

cos2 θ = 1 - sin2 θ
sin2 θ = 1 - cos2 θ

sec2 θ = 1 + tan2 θ
sec2 θ - tan2 θ = 1
tan2 θ = sec2 θ - 1

csc2 θ = 1 + cot2 θ
csc2 θ - 1 = cot2 θ
csc2 θ - cot2 θ = 1

The trigonometrical ratios of a positive acute angle θ are always non-negative and

(i) sin θ and cos θ can never be greater than 1;

(ii) sec θ and csc θ can never be less than 1;

(iii) tan θ and cot θ can have any value.


Worked-out problems on trigonometric identity:

1. Proof the identity:

tan2 θ – (1/cos2 θ) + 1 = 0

Solution:

L.H.S = tan2 θ – (1/cos2 θ) + 1

= tan2 θ - sec2 θ + 1 [since, 1/cos θ = sec θ]

= tan2 θ – (1 + tan2 θ) +1 [since, sec2 θ = 1 + tan2 θ]

= tan2 θ – 1 – tan2 θ + 1

= 0 = R.H.S. Proved


2. Verify that:

1/(sin θ + cos θ) + 1/(sin θ - cos θ) = 2 sin θ/(1 – 2 cos2 θ)

Solution:

L.H.S = 1/(sin θ + cos θ) + 1/(sin θ - cos θ)

= [(sin θ - cos θ) + (sin θ + cos θ)]/(sin θ + cos θ)(sin θ - cos θ)

= [sin θ - cos θ + sin θ + cos θ]/(sin2 θ - cos2 θ)

= 2 sin θ/[(1 - cos2 θ) - cos2 θ] [since, sin2 θ = 1 - cos2 θ]

= 2 sin θ/[1 - cos2 θ - cos2 θ]

= 2 sin θ/[1 – 2 cos2 θ] = R.H.S. Proved


3. Prove that:

sec2 θ + csc2 θ = sec2 θ ∙ csc2 θ

Solution:

L.H.S. = sec2 θ + csc2 θ

= 1/cos2 θ + 1/sin2 θ [since, sec θ = 1/cos θ and csc θ = 1/sin θ]

= (sin2 θ + cos2 θ)/(cos2 θ sin2 θ)

= 1/cos2 θ ∙ sin2 θ [since, sin2 θ + cos2 θ = 1]

= 1/cos2 θ ∙ 1/sin2 θ

= sec2 θ ∙ csc2 θ = R.H.S. Proved




More examples on trigonometrical identity are explained below. To proof the identities step-by-step follow the above trig formulas.

4. Prove the identity:

cos θ/(1 + sin θ) = (1 + cos θ - sin θ)/(1 + cos θ + sin θ)

Solution:

R. H. S. = (1 + cos θ - sin θ)/(1 + cos θ + sin θ)

= {(1 + cos θ - sin θ) (1 + cos θ + sin θ)}/{(1+ cos θ + sin θ) (1 + cos θ + sin θ)} [multiplying both numerator and denominator by (1 + cos θ + sin θ)]

= {(1 + cos θ)2 - sin2 θ}/(1 + cos θ + sin θ)2

= (1 + cos2 θ + 2 cos θ - sin2 θ)/{(1 + cos θ)2 + 2 ∙ (1 + cos θ) sin θ + sin2 θ}

= (cos2 θ + 2 cos θ + 1 - sin2 θ)/{1 + cos2 θ + 2 cos θ + 2 ∙ (1 + cos θ) ∙ sin θ + sin2 θ}

= (cos2 θ + 2 cos θ + cos2 θ)/{2 + 2 cos θ + 2 ∙ (1 + cos θ) ∙ sin θ} [since, sin2 θ + cos2 θ = 1 and 1 - sin2 θ = cos2 θ]

= {2 cos θ (1 + cos θ)}/{2 (1 + cos θ)(1 + sin θ)}

= cos θ/(1 + sin θ) = L.H.S. Proved


5. Verify the trigonometrical identity:

(cot θ + csc θ – 1)/(cot θ - csc θ + 1) = (1 + cos θ)/sin θ

L.H.S. = (cot θ + csc θ – 1)/(cot θ - csc θ + 1)

= {cot θ + csc θ - (csc2 θ - cot2 θ)}/(cot θ - csc θ + 1)

[csc2 θ = 1 + cot2 θ ⇒ csc2 θ - cot2 θ = 1]

= {(cot θ + csc θ) - (csc θ + cot θ) (csc θ - cot θ)}/(cot θ - csc θ + 1)

= {(cot θ + csc θ) (1 - csc θ + cot θ)}/ (1 - csc θ + cot θ)

= cot θ + csc θ

= (cos θ/sin θ) + (1/sin θ)

= (1 + cos θ)/sin θ = R.H.S. Proved

Trigonometric Functions


10th Grade Math

From Trigonometrical Identity to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. One More than Numbers upto 10 | Counting One More | Learn 1 more Than

    Apr 11, 25 04:09 PM

    One More than Numbers upto 10
    1 more than means we need to add or count one more number to the given numbers. Here, we will learn counting one more than upto number 10. Examples of counting 1 more than up to number 10 are given as…

    Read More

  2. One Less than Numbers upto 10 | Counting One Less | Learn 1 Less Than

    Apr 11, 25 04:07 PM

    One Less than Numbers upto 10
    What is one less than? 1 less than means we need to subtract or count one less number of the given numbers. Here, we will learn counting one less than upto number 10. Examples of counting 1 less than…

    Read More

  3. Properties of Multiplication and Division of Fractions Worksheet | Ans

    Apr 10, 25 03:17 PM

    In properties of multiplication and division of fractions worksheet you will get different types of questions based on properties of multiplication of fractional numbers and properties of division of…

    Read More

  4. Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

    Apr 09, 25 01:44 AM

    In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

    Read More

  5. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Apr 08, 25 01:13 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More