Triangle on Same Base and between Same Parallels

Triangle on same base and between same parallels is equal in area.

In the adjoining figure, ∆ABD and ∆DEF are having equal base ‘a cm’ and are between the same parallels BF and AD.

Triangle on Same Base and between Same Parallels






Therefore, area of ∆ABD = Area of ∆DEF


Prove that the triangles on same base and between same parallels are equal in area.

Let ∆ABC and ∆ABD be on the same base AB and between the same parallel AB and CD. It is require to prove that ∆ABC = ∆ABD.

Construction: A parallelogram ABPQ is constructed with AB as base and lying between the same parallels AB and CD.

Triangles on Same Base and between Same Parallels






Proof: Since ∆ABC and parallelogram ABPQ are on the same base AB and between the same parallels AB and Q,

Therefore, ∆ABC = ½(Parallelogram ABPQ)

Similarly, ∆ABD = ½(Parallelogram ABPQ)

Therefore, ∆ABC = ∆ABD.

Note: Since the relationship between the areas of a triangle and a parallelogram on the same base and between the same parallels in known to us, so that parallelogram ABPQ is constructed]


Solved examples for the triangle on same base and between same parallels:

1. Shaw that the medians of the triangle divide it into triangles of equal area.

Solution:  

Triangle on Same Base






AD is the median of the ∆ABC and AE is the altitude of ∆ABC and also ∆ADC.

(AE ┴ BC)

AD is the median of ABC              

Therefore, BD = DC

Multiply both sides by AE,           

Then BD × AE = DC × AE                

1/2 BD × AE = 1/2 DC × AE              

Area of ∆ABD = Area of ∆ADC   


2. AD is the median of ∆ABC and ∆ADC. E is any point on AD. Show that area of ∆ABE = area of ∆ACE.

Solution:

Solved Examples for the Triangle on Same Base






Since, AD is the median of ∆ABC, therefore BD = DC

Since, ∆ABD and ∆ADC have equal bases BD = DC and are between the same parallels BC and l,

Therefore Area of ∆ABD = Area of ∆ADC

Since, E lies on AD,

Therefore, ED is the median of the BEC

Now, BED and CED have equal bases BD = DC and between the same parallels BC and m.

Therefore, area of ∆BED = Area of ∆CED

On subtracting (1) and (2), we get

Area of ∆ABD - Area of ∆BED = Area of ∆ACD - Area of ∆CED

Area of ∆ABE = Area of ∆ACE

Figure on Same Base and between Same Parallels

Parallelograms on Same Base and between Same Parallels

Parallelograms and Rectangles on Same Base and between Same Parallels

Triangle and Parallelogram on Same Base and between Same Parallels

Triangle on Same Base and between Same Parallels






8th Grade Math Practice

From Triangle on Same Base and between Same Parallels to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

Worksheet on Same Base and Same Parallels