Transitive Relation on Set

What is transitive relation on set?

Let A be a set in which the relation R defined.

R is said to be transitive, if

(a, b) ∈ R and (b, a) ∈ R ⇒ (a, c) ∈ R,

That is aRb and bRc ⇒ aRc where a, b, c ∈ A.

The relation is said to be non-transitive, if

(a, b) ∈ R and (b, c) ∈ R do not imply (a, c ) ∈ R.

For example, in the set A of natural numbers if the relation R be defined by ‘x less than y’ then

a < b and b < c imply a < c, that is, aRb and bRc ⇒ aRc.

Hence this relation is transitive.

Solved example of transitive relation on set:

1. Let k be given fixed positive integer.

Let R = {(a, a) : a, b  ∈ Z and (a – b) is divisible by k}.

Show that R is transitive relation.

Solution:

Given R = {(a, b) : a, b ∈ Z, and (a – b) is divisible by k}.

Let (a, b) ∈ R and (b, c) ∈ R. Then

      (a, b) ∈ R and (b, c) ∈ R

   ⇒ (a – b) is divisible by k and (b – c) is divisible by k.

   ⇒ {(a – b) + (b – c)} is divisible by k.

   ⇒ (a – c) is divisible by k.

   ⇒ (a, c) ∈ R.

Therefore, (a, b) ∈ R and (b, c) ∈ R    (a, c) ∈ R.

So, R is transitive relation.


2. A relation ρ on the set N is given by “ρ = {(a, b) ∈ N × N : a is divisor of b}”. Examine whether ρ is transitive or not transitive relation on set N.

Solution:

Given ρ = {(a, b) ∈ N × N : a is divisor of b}.

Let m, n, p ∈ N and (m, n) ∈ ρ and  (n, p ) ∈ ρ. Then

                                                 (m, n) ∈ ρ and  (n, p ) ∈ ρ

                                              ⇒ m is divisor of n and n is divisor of p

                                              ⇒ m is divisor of p

                                              ⇒ (m, p) ∈ ρ

Therefore, (m, n) ∈ ρ and (n, p) ∈ ρ ⇒ (m, p) ∈ ρ.

So, R is transitive relation.

Set Theory

Sets

Representation of a Set

Types of Sets

Pairs of Sets

Subset

Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets








7th Grade Math Problems

8th Grade Math Practice

From Transitive Relation on Set to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Skip Counting by 5's | Concept on Skip Counting |Skip Counting by Five

    Apr 07, 25 10:13 AM

    Skip Counting By 5
    The concept on skip counting by 5’s or fives is an essential skill to learn when making the jump from counting to basic addition.

    Read More

  2. Addition of 3-Digit Numbers with Regrouping | Step-by-Step Method

    Apr 07, 25 02:53 AM

    Addition of 3-Digit Numbers with Regrouping
    We will learn addition of 3-digit numbers with regrouping. Do you know the addition of 3-digit number? Yes I know how to add the numbers. Now, let us learn to add the 3-digit numbers with regrouping.

    Read More

  3. Worksheet on Fractions | Questions on Fractions | Representation | Ans

    Apr 07, 25 02:37 AM

    Worksheet on Fractions
    In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced

    Read More

  4. Counting Numbers from 1 to 50 | Match the Number | Missing Numbers

    Apr 04, 25 03:46 PM

    Math Coloring Pages on Counting Number Oredr
    In counting numbers from 1 to 50, recognize the numbers, count and then join the numbers in the correct number order. Here we mainly need eye-hand coordination to draw the picture and maintain the num

    Read More

  5. Counting Eleven to Twenty with Numbers and Words |Numbers from 11 - 20

    Apr 04, 25 03:21 PM

    Counting eleven to twenty with numbers and words are explained below. One ten and one more is eleven. Eleven comes after ten. One ten and two more is twelve. Twelve comes after eleven.

    Read More