Supplementary Angles


When the sum of the measures of two angles is 180°, such angles are called supplementary angles and each of them is called a supplement of the other.

The vertices of two angles may be same or different. In the given figure ∠AOC and ∠BOC are supplementary angles as ∠AOC + ∠BOC = 180°.

supplementary angles



Again, ∠QPR and ∠EDF are supplementary angles as ∠QPR + ∠EDF = 130° + 50° = 180°.

supplementary angles image


Angles of 60° and 120° are supplementary angles. 

The supplement of an angle of 110° is the angle of 70° and the supplement of an angle of 70° is the angle of 110°

Observations: 

(i) Two acute angles cannot be supplement of each other. 

(ii) Two right angles are always supplementary. 

(iii) Two obtuse angles cannot be supplement of each other. 


Worked-out Problems on Supplementary Angles:

1. Verify if 115°, 65° are a pair of supplementary angles.

Solution:

115° + 65° = 180°

Hence, they are a pair of supplementary angles.




2. Find the supplement of the angle (20 + y)°.

Solution:

Supplement of the angle (20 + y)° = 180° - (20 + y)°

= 180° - 20° - y°

= (160 - y) °



3. If angles of measures (x — 2)° and (2x + 5)° are a pair of supplementary angles. Find the measures.

Solution:

Since (x - 2)° and (2x + 5)° represent a pair of supplementary angles, then their sum must be equal to 180°.

Therefore, (x - 2) + (2x + 5) = 180

x - 2 + 2x + 5 = 180

x + 2x - 2 + 5 = 180

3x + 3 = 180

3x + 3 – 3 = 180 — 3

3x = 180 — 3

3x = 177

x = 177/3

x = 59°

Therefore, we know the value of x = 59°, put the value in place of x

x - 2

= 59 - 2

= 57°

And again, 2x + 5

= 2 × 59 + 5

= 118 + 5

= 123°

Therefore, the two supplementary angles are 57° and 123°. 



4. Two supplementary angles are in the ratio 7 : 8. Find the measure of the angles. 

Solution: 

Let the common ratio be x. 

If one angle is 7x, then the other angle is 8x. 

Therefore, 7x + 8x = 180 

15x = 180 

x = 180/15

x = 12

Put the value of x = 12

One angle is 7x 

= 7 × 12 

= 84° 

And the other angle is 8x 

= 8 × 12

= 96° 

Therefore, the two supplementary angles are 84° and 96°. 



5. In the given figure find the measure of the unknown angle. 

problems on supplementary angles



Solution:

x + 55° + 40° = 180°

The sum of angles at a point on a line on one side of it is 180°

Therefore, x + 95° = 180°

x + 95° - 95° = 180° - 95°

x = 85°


 Lines and Angles

Fundamental Geometrical Concepts

Angles

Classification of Angles

Related Angles

Some Geometric Terms and Results

Complementary Angles

Supplementary Angles

Complementary and Supplementary Angles

Adjacent Angles

Linear Pair of Angles

Vertically Opposite Angles

Parallel Lines

Transversal Line

Parallel and Transversal Lines






7th Grade Math Problems

8th Grade Math Practice 

From Supplementary Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More