Supplementary Angles


When the sum of the measures of two angles is 180°, such angles are called supplementary angles and each of them is called a supplement of the other.

The vertices of two angles may be same or different. In the given figure ∠AOC and ∠BOC are supplementary angles as ∠AOC + ∠BOC = 180°.

supplementary angles



Again, ∠QPR and ∠EDF are supplementary angles as ∠QPR + ∠EDF = 130° + 50° = 180°.

supplementary angles image


Angles of 60° and 120° are supplementary angles. 

The supplement of an angle of 110° is the angle of 70° and the supplement of an angle of 70° is the angle of 110°

Observations: 

(i) Two acute angles cannot be supplement of each other. 

(ii) Two right angles are always supplementary. 

(iii) Two obtuse angles cannot be supplement of each other. 


Worked-out Problems on Supplementary Angles:

1. Verify if 115°, 65° are a pair of supplementary angles.

Solution:

115° + 65° = 180°

Hence, they are a pair of supplementary angles.




2. Find the supplement of the angle (20 + y)°.

Solution:

Supplement of the angle (20 + y)° = 180° - (20 + y)°

= 180° - 20° - y°

= (160 - y) °



3. If angles of measures (x — 2)° and (2x + 5)° are a pair of supplementary angles. Find the measures.

Solution:

Since (x - 2)° and (2x + 5)° represent a pair of supplementary angles, then their sum must be equal to 180°.

Therefore, (x - 2) + (2x + 5) = 180

x - 2 + 2x + 5 = 180

x + 2x - 2 + 5 = 180

3x + 3 = 180

3x + 3 – 3 = 180 — 3

3x = 180 — 3

3x = 177

x = 177/3

x = 59°

Therefore, we know the value of x = 59°, put the value in place of x

x - 2

= 59 - 2

= 57°

And again, 2x + 5

= 2 × 59 + 5

= 118 + 5

= 123°

Therefore, the two supplementary angles are 57° and 123°. 



4. Two supplementary angles are in the ratio 7 : 8. Find the measure of the angles. 

Solution: 

Let the common ratio be x. 

If one angle is 7x, then the other angle is 8x. 

Therefore, 7x + 8x = 180 

15x = 180 

x = 180/15

x = 12

Put the value of x = 12

One angle is 7x 

= 7 × 12 

= 84° 

And the other angle is 8x 

= 8 × 12

= 96° 

Therefore, the two supplementary angles are 84° and 96°. 



5. In the given figure find the measure of the unknown angle. 

problems on supplementary angles



Solution:

x + 55° + 40° = 180°

The sum of angles at a point on a line on one side of it is 180°

Therefore, x + 95° = 180°

x + 95° - 95° = 180° - 95°

x = 85°


 Lines and Angles

Fundamental Geometrical Concepts

Angles

Classification of Angles

Related Angles

Some Geometric Terms and Results

Complementary Angles

Supplementary Angles

Complementary and Supplementary Angles

Adjacent Angles

Linear Pair of Angles

Vertically Opposite Angles

Parallel Lines

Transversal Line

Parallel and Transversal Lines






7th Grade Math Problems

8th Grade Math Practice 

From Supplementary Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More