Sum of the Interior Angles of an n-sided Polygon

Here we will discuss the theorem of sum of the interior angles of an n-sided polygon and some related example problems.

The sum of the interior angles of a polygon of n sides is equal to (2n - 4) right angles.

Given: Let PQRS .... Z be a polygon of n sides.

To prove: ∠P + ∠Q + ∠R + ∠S + ..... + ∠Z = (2n – 4) 90°.

Construction: Take any point O inside the polygon. Join OP, OQ, OR, OS, ....., OZ.

Sum of the Interior Angles of a Polygon

Proof:

Statement

Reason

1. As the polygon has n sides, n triangles are formed, namely, ∆OPQ, ∆QR, ...., ∆OZP.

1. On each side of the polygon one triangle has been drawn.

2. The sum of all the angles of the n triangles is 2n right angles.

2. The sum of the angles of each triangle is 2 right angles.

3. ∠P + ∠Q + ∠R + ..... + ∠Z + (sum of all angles formed at O) = 2n right angles.

3. From statement 2.

4. ∠P + ∠Q + ∠R + ..... + ∠Z + 4 right angles = 2n right angles.

4. Sum of angles around the point O is 4 right angles.

5. ∠P + ∠Q + ∠R + ..... + ∠Z

           = 2n right angles - 4 right angles

           = (2n – 4) right angles

           = (2n – 4) 90°.        (Proved)

5. From statement 4.

Note:

1. In a regular polygon of n sides, all angles are equal.

Therefore, each interior angle = \(\frac{(2n - 4) × 90°}{n}\).


2. A quadrilateral is a polygon for which n = 4.

Therefore, the sum of interior angles of a quadrilateral = (2 × 4 – 4) × 90° = 360°

 

Solved examples on finding the sum of the interior angles of an n-sided polygon:

1. Find the sum of the interior angles of a polygon of seven sides.

Solution:

Here, n = 7.

Sum of the interior angles = (2n – 4) × 90°

                                      = (2 × 7 - 4) × 90°

                                      = 900°

Therefore, the sum of the interior angles of a polygon is 900°.


2. Sum of the interior angles of a polygon is 540°. Find the number of sides of the polygon.

Solution:

Let the number of sides = n.

Therefore, (2n – 4) × 90° = 540°

⟹ 2n - 4 = \(\frac{540°}{90°}\)

⟹ 2n - 4 = 6

⟹ 2n = 6 + 4

⟹ 2n = 10

⟹ n = \(\frac{10}{2}\)

⟹ n = 5

Therefore, the number of sides of the polygon is 5.


3. Find the measure of each interior angle of a regular octagon.

Solution:

Here, n = 8.

The measure of each interior angle = \(\frac{(2n – 4) × 90°}{n}\)

                                                   = \(\frac{(2 × 8 – 4) × 90°}{8}\)

                                                   = \(\frac{(16 – 4) × 90°}{8}\)

                                                   = \(\frac{12 × 90°}{8}\)

                                                   = 135°

Therefore, the measure of each interior angle of a regular octagon is 135°.


4. The ratio of the number of sides of two regular polygons is 3:4, and the ratio of the sum of their interior angles is 2:3. Find the number of sides of each polygon.

Solution:

Let the number of sides of the two regular polygons be n\(_{1}\) and n\(_{2}\).

According to the problem,

\(\frac{n_{1}}{n_{2}}\) = \(\frac{3}{4}\)

⟹ n\(_{1}\) = \(\frac{3n_{2}}{4}\) ........... (i)

Again, \(\frac{2(n_{1} – 2) × 90°}{2(n_{2} – 2) × 90°}\) = \(\frac{2}{3}\)

⟹ 3(n\(_{1}\) – 2) = 2(n\(_{2}\) – 2)

⟹ 3n\(_{1}\) = 2n\(_{2}\) + 2

⟹ 3 × \(\frac{3n_{2}}{4}\) = 2n\(_{2}\) + 2

⟹ 9n\(_{2}\) = 8n\(_{2}\) + 8

Therefore, n\(_{2}\) = 8.

Substituting the value of n\(_{2}\) = 8 in (i) we get,

n\(_{1}\) = \(\frac{3}{4}\) × 8

⟹ n\(_{1}\) = 6.

Therefore, the number of sides of the two regular polygons be 6 and 8.




9th Grade Math

From Sum of the Interior Angles of an n-sided Polygon to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:53 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More