Sum of the Interior Angles of an n-sided Polygon

Here we will discuss the theorem of sum of the interior angles of an n-sided polygon and some related example problems.

The sum of the interior angles of a polygon of n sides is equal to (2n - 4) right angles.

Given: Let PQRS .... Z be a polygon of n sides.

To prove: ∠P + ∠Q + ∠R + ∠S + ..... + ∠Z = (2n – 4) 90°.

Construction: Take any point O inside the polygon. Join OP, OQ, OR, OS, ....., OZ.

Sum of the Interior Angles of a Polygon

Proof:

Statement

Reason

1. As the polygon has n sides, n triangles are formed, namely, ∆OPQ, ∆QR, ...., ∆OZP.

1. On each side of the polygon one triangle has been drawn.

2. The sum of all the angles of the n triangles is 2n right angles.

2. The sum of the angles of each triangle is 2 right angles.

3. ∠P + ∠Q + ∠R + ..... + ∠Z + (sum of all angles formed at O) = 2n right angles.

3. From statement 2.

4. ∠P + ∠Q + ∠R + ..... + ∠Z + 4 right angles = 2n right angles.

4. Sum of angles around the point O is 4 right angles.

5. ∠P + ∠Q + ∠R + ..... + ∠Z

           = 2n right angles - 4 right angles

           = (2n – 4) right angles

           = (2n – 4) 90°.        (Proved)

5. From statement 4.

Note:

1. In a regular polygon of n sides, all angles are equal.

Therefore, each interior angle = \(\frac{(2n - 4) × 90°}{n}\).


2. A quadrilateral is a polygon for which n = 4.

Therefore, the sum of interior angles of a quadrilateral = (2 × 4 – 4) × 90° = 360°

 

Solved examples on finding the sum of the interior angles of an n-sided polygon:

1. Find the sum of the interior angles of a polygon of seven sides.

Solution:

Here, n = 7.

Sum of the interior angles = (2n – 4) × 90°

                                      = (2 × 7 - 4) × 90°

                                      = 900°

Therefore, the sum of the interior angles of a polygon is 900°.


2. Sum of the interior angles of a polygon is 540°. Find the number of sides of the polygon.

Solution:

Let the number of sides = n.

Therefore, (2n – 4) × 90° = 540°

⟹ 2n - 4 = \(\frac{540°}{90°}\)

⟹ 2n - 4 = 6

⟹ 2n = 6 + 4

⟹ 2n = 10

⟹ n = \(\frac{10}{2}\)

⟹ n = 5

Therefore, the number of sides of the polygon is 5.


3. Find the measure of each interior angle of a regular octagon.

Solution:

Here, n = 8.

The measure of each interior angle = \(\frac{(2n – 4) × 90°}{n}\)

                                                   = \(\frac{(2 × 8 – 4) × 90°}{8}\)

                                                   = \(\frac{(16 – 4) × 90°}{8}\)

                                                   = \(\frac{12 × 90°}{8}\)

                                                   = 135°

Therefore, the measure of each interior angle of a regular octagon is 135°.


4. The ratio of the number of sides of two regular polygons is 3:4, and the ratio of the sum of their interior angles is 2:3. Find the number of sides of each polygon.

Solution:

Let the number of sides of the two regular polygons be n\(_{1}\) and n\(_{2}\).

According to the problem,

\(\frac{n_{1}}{n_{2}}\) = \(\frac{3}{4}\)

⟹ n\(_{1}\) = \(\frac{3n_{2}}{4}\) ........... (i)

Again, \(\frac{2(n_{1} – 2) × 90°}{2(n_{2} – 2) × 90°}\) = \(\frac{2}{3}\)

⟹ 3(n\(_{1}\) – 2) = 2(n\(_{2}\) – 2)

⟹ 3n\(_{1}\) = 2n\(_{2}\) + 2

⟹ 3 × \(\frac{3n_{2}}{4}\) = 2n\(_{2}\) + 2

⟹ 9n\(_{2}\) = 8n\(_{2}\) + 8

Therefore, n\(_{2}\) = 8.

Substituting the value of n\(_{2}\) = 8 in (i) we get,

n\(_{1}\) = \(\frac{3}{4}\) × 8

⟹ n\(_{1}\) = 6.

Therefore, the number of sides of the two regular polygons be 6 and 8.




9th Grade Math

From Sum of the Interior Angles of an n-sided Polygon to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More