Sum of the First n Terms of an Arithmetic Progression

We will learn how to find the sum of first n terms of an Arithmetic Progression.

Prove that the sum S\(_{n}\) of n terms of an Arithmetic Progress (A.P.) whose first term ‘a’ and common difference ‘d’ is

S = \(\frac{n}{2}\)[2a + (n - 1)d]

Or, S = \(\frac{n}{2}\)[a + l], where l = last term = a + (n - 1)d

Proof:

Suppose, a\(_{1}\), a\(_{2}\), a\(_{3}\), ……….. be a\(_{n}\)  Arithmetic Progression whose first term is a and common difference is d.

Then,

a\(_{1}\) = a

a\(_{2}\) = a + d

a\(_{3}\) = a + 2d

a\(_{4}\) = a + 3d

………..

………..

a\(_{n}\) = a + (n - 1)d

Now,

S = a\(_{1}\) + a\(_{2}\) + a\(_{3}\) + ………….. + a\(_{n -1}\) + a\(_{n}\)

S = a + (a + d) + (a + 2d) + (a + 3d) + ……….. + {a + (n - 2)d} + {a + (n - 1)d} ……………….. (i)

By writing the terms of S in the reverse order, we get,

S = {a + (n - 1)d} + {a + (n - 2)d} + {a + (n - 3)d} + ……….. + (a + 3d) + (a + 2d) + (a + d) + a

Adding the corresponding terms of (i) and (ii), we get

2S = {2a + (n - 1)d} + {2a + (n - 1)d} + {2a + (n - 1)d} + ………. + {a + (n - 2)d}

2S = n[2a + (n -1)d

S = \(\frac{n}{2}\)[2a + (n - 1)d]

Now, l = last term = nth term = a + (n - 1)d

Therefore, S = \(\frac{n}{2}\)[2a + (n - 1)d] = \(\frac{n}{2}\)[a {a + (n - 1)d}] = \(\frac{n}{2}\)[a + l].

 

We can also find find the sum of first n terms of a\(_{n}\) Arithmetic Progression according to the process below.

Suppose, S denote the sum of the first n terms of the Arithmetic Progression {a, a + d, a + 2d, a + 3d, a + 4d, a + 5d ……………...}.

Now nth term of the given Arithmetic Progression is a + (n - 1)d

Let the nth term of the given Arithmetic Progression = l

Therefore, a + (n - 1)d = l

Hence, the term preceding the last term is l – d.

The term preceding the term (l - d) is l - 2d and so on.

Therefore, S = a + (a + d) + (a + 2d) + (a + 3d) + …………………….. to n tems

Or, S = a + (a + d) + (a + 2d) + (a + 3d) + …………………….. + (l - 2d) + (l - d) + l ……………… (i)

Writing the above series in reverse order, we get

S = l + (l - d) + (l - 2d) + ……………. + (a + 2d) + (a + d) + a………………(ii) 

Adding the corresponding terms of (i) and (ii), we get

2S = (a + l) + (a + l) + (a + l) + ……………………. to n terms

2S = n(a + l)

S = \(\frac{n}{2}\)(a + l)

⇒ S = \(\frac{Number of terms}{2}\) × (First term + Last term) …………(iii)

⇒ S = \(\frac{n}{2}\)[a + a + (n - 1)d], Since last term l = a + (n - 1)d

⇒ S = \(\frac{n}{2}\)[2a + (n - 1)d]

Solved examples to find the sum of first n terms of an Arithmetic Progression:

1. Find the sum of the following Arithmetic series:

1 + 8 + 15 + 22 + 29 + 36 + ………………… to 17 terms

Solution:

First term of the given arithmetic series = 1

Second term of the given arithmetic series = 8

Third term of the given arithmetic series = 15

Fourth term of the given arithmetic series = 22

Fifth term of the given arithmetic series = 29

Now, Second term - First term = 8 - 1 = 7

Third term - Second term = 15 - 8 = 7

Fourth term - Third term = 22 - 15 = 7

Therefore, common difference of the given arithmetic series is 7.

The number of terms of the given A. P. series (n) = 17

We know that the sum of first n terms of the Arithmetic Progress, whose first term = a and common difference = d is

S = \(\frac{n}{2}\)[2a + (n - 1)d]

Therefore, the required sum of first 20 terms of the series = \(\frac{17}{2}\)[2 ∙ 1 + (17 - 1) ∙ 7]

\(\frac{17}{2}\)[2 + 16 ∙ 7]

\(\frac{17}{2}\)[2 + 112]

\(\frac{17}{2}\) × 114

= 17 × 57

= 969

 

2. Find the sum of the series: 7 + 15 + 23 + 31 + 39 + 47 + ……….. + 255

Solution:

First term of the given arithmetic series = 7

Second term of the given arithmetic series = 15

Third term of the given arithmetic series = 23

Fourth term of the given arithmetic series = 31

Fifth term of the given arithmetic series = 39

Now, Second term - First term = 15 - 7 = 8

Third term - Second term = 23 - 15 = 8

Fourth term - Third term = 31 - 23 = 8

Therefore, the given sequence is a\(_{n}\) arithmetic series with the common difference 8.

Let there be n terms in the given arithmetic series. Then

a\(_{n}\) = 255

⇒ a + (n - 1)d = 255

⇒ 7 + (n - 1) × 8 = 255

⇒ 7 + 8n - 8 = 255

⇒ 8n - 1 = 255

⇒ 8n = 256

⇒ n = 32

Therefore, the required sum of the series = \(\frac{32}{2}\)[2 ∙ 7 + (32 - 1) ∙ 8]

= 16 [14 + 31 ∙ 8]

= 16 [14 + 248]

= 16 × 262

= 4192

 

Note:

1. We know the formula to find the sum of first n terms of a\(_{n}\) Arithmetic Progression is S = \(\frac{n}{2}\)[2a + (n - 1)d]. In the formula there are four quantities. They are S, a, n and d. If any three quantities  are known, the fourth quantity can be determined.

Suppose when two quantities are given then, the remaining two quantities are provided by some other relation.

2. When the sum S\(_{n}\) of n terms of an Arithmetic Progression is given, then the nth term a_n of the Arithmetic Progression cann be determined by the formula a\(_{n}\) = S\(_{n}\) - S\(_{n -1}\).

Arithmetic Progression






11 and 12 Grade Math

From Sum of the First n Terms of an Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More