Sum of n terms of a Geometric Progression

We will learn how to find the sum of n terms of the Geometric Progression {a, ar, ar\(^{2}\), ar\(^{3}\), ar\(^{4}\), ...........}

To prove that the sum of first n terms of the Geometric Progression whose first term ‘a’ and common ratio ‘r’ is given by

S\(_{n}\) = a(\(\frac{r^{n} - 1}{r - 1}\))

⇒ S\(_{n}\) = a(\(\frac{1 - r^{n}}{1 - r}\)), r ≠ 1.

Let Sn denote the sum of n terms of the Geometric Progression {a, ar, ar\(^{2}\), ar\(^{3}\), ar\(^{4}\), ...........} with first term ‘a’ and common ratio r. Then,

Now, the nth terms of the given Geometric Progression = a ∙ r\(^{n - 1}\).

Therefore, S\(_{n}\) = a + ar + ar\(^{2}\) + ar\(^{3}\) + ar\(^{4}\) + ............... + ar\(^{n - 2}\) + ar\(^{n - 1}\) ............ (i)

Multiplying both sides by r, we get,

rS\(_{n}\) = ar + ar\(^{2}\) + ar\(^{3}\) + ar\(^{4}\) + ar\(^{4}\) + ................ + ar\(^{n - 1}\) + ar\(^{n}\) ............ (ii)

____________________________________________________________

On subtracting (ii) from (i), we get

S\(_{n}\) - rS\(_{n}\) = a - ar\(^{n}\)

⇒ S\(_{n}\)(1 - r) = a(1 - r\(^{n}\))

⇒ S\(_{n}\) = a\(\frac{(1 - r^{n})}{(1 - r)}\)

⇒ S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\)

Hence, S\(_{n}\) = a\(\frac{(1 - r^{n})}{(1 - r)}\) or, S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\)


Notes:

(i) The above formulas do not hold for r = 1. For r = 1, the sum of n terms of the Geometric Progression is S\(_{n}\) = na.

(ii)When the numerical value of r is less than 1 (i.e., - 1 < r < 1), then the formula S\(_{n}\) = a\(\frac{(1 - r^{n})}{(1 - r)}\) is used.

(iii) When the numerical value of r is greater than 1 (i.e., r > 1 or, r < -1) then the formula S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\) is used.

(iv) When r = 1, then S\(_{n}\) = a + a + a + a + a + .................... to n terms = na.

(v) If l is the last term of the Geometric Progression, then l = ar\(^{n - 1}\).

Therefore, S\(_{n}\) = a(\(\frac{1 - r^{n}}{1 - r}\)) = (\(\frac{a - ar^{n}}{1 - r}\)) = \(\frac{a - (ar^{n - 1})r}{(1 - r)}\) = \(\frac{a - lr}{1 - r}\)

Thus, S\(_{n}\) = \(\frac{a - lr}{1 - r}\)

Or, S\(_{n}\) = \(\frac{lr - a}{r - 1}\), r ≠ 1.

 

Solved examples to find the Sum of first n terms of the Geometric Progression:

1. Find the sum of the geometric series:

4 - 12 + 36 - 108 + .............. to 10 terms

Solution:

The first term of the given Geometric Progression = a = 4 and its common ratio = r = \(\frac{-12}{4}\) = -3.

Therefore, the sum of the first 10 terms of the geometric series

= a ∙ \(\frac{r^{n} - 1}{r - 1}\), [Using the formula S\(_{n}\) = a\(\frac{(r^{n} - 1)}{(r - 1)}\) since, r = - 3 i.e., r < -1]

= 4 ∙ \(\frac{(-3)^{10} - 1}{-3 - 1}\)

= 4 ∙ \(\frac{(-3)^{10} - 1}{-4}\)

= - (-3)\(^{10}\) - 1

= -59048


2. Find the sum of the geometric series:

1 + \(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{8}\) + \(\frac{1}{16}\) + .............. to 10 terms

Solution:

The first term of the given Geometric Progression = a = 1 and its common ratio = r = \(\frac{\frac{1}{2}}{1}\) = \(\frac{1}{2}\)

Therefore, the sum of the first 10 terms of the geometric series

S\(_{10}\) = a\(\frac{(1 - r^{10})}{(1 - r)}\)

⇒ S\(_{10}\) = 1 ∙ \(\frac{(1 - (\frac{1}{2})^{10})}{(1 - \frac{1}{2})}\)

⇒ S\(_{10}\) = 2(\(\frac{1}{2^{10}}\))

⇒ S\(_{10}\) = 2(\(\frac{2^{10} - 1}{2^{10}}\))

⇒ S\(_{10}\) = 2(\(\frac{1024 - 1}{1024}\))

⇒ S\(_{10}\) = \(\frac{1024 - 1}{512}\)

⇒ S\(_{10}\) = \(\frac{1023}{512}\)

Note that we have used formula Sn = a(\(\frac{(1 - r^{n})}{(1 - r)}\) since r = 1/4 i.e., r < 1]

 

3. Find the sum of 12 terms of the Geometric Progression 3, 12, 48, 192, 768, ................

Solution:

The first term of the given Geometric Progression = a = 3 and its common ratio = r = \(\frac{12}{3}\) = 4

Therefore, the sum of the first 12 terms of the geometric series

Therefore, S\(_{12}\) = a\(\frac{r^{12} - 1}{r - 1}\)

= 3(\(\frac{4^{12} - 1}{4 - 1}\))

= 3(\(\frac{16777216 - 1}{3}\))

= 16777216 - 1

= 16777215


4. Find the sum to n terms: 5 + 55 + 555 + 5555 + .............

Solution:

We have 5 + 55 + 555 + 5555 + ............. to n terms

= 5[1 + 11 + 111 + 1111 + .............. + to n terms]

= \(\frac{5}{9}\)[9 + 99 + 999 + 9999 + ................ + to n terms]

= \(\frac{5}{9}\)[(10 – 1) + (10\(^{2}\) - 1) + (10\(^{3}\) - 1) + (10\(^{4}\) - 1) + .............. + (10\(^{n}\) - 1)]

= \(\frac{5}{9}\)[(10 + 10\(^{2}\) + 10\(^{3}\) + 10\(^{4}\) + ................ + 10\(^{n}\)) – ( 1 + 1 + 1 + 1 + ................ + 1)] n times

= \(\frac{5}{9}\)[10 × \(\frac{(10^{n} - 1)}{(10 - 1)}\) – n]

= \(\frac{5}{9}\)[\(\frac{10}{9}\)(10\(^{n}\) – 1) – n]

= \(\frac{5}{81}\)[10\(^{n + 1}\) – 10 – 9n]

 Geometric Progression




11 and 12 Grade Math 

From Sum of n terms of a Geometric Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 22, 24 01:00 AM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 22, 24 12:12 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  5. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More