Subtraction of Unlike Fractions

We will learn how to solve subtraction of unlike fractions. In order to subtract unlike fractions first we convert them as like fractions.

To subtract unlike fractions, we first convert them into like fractions. In order to make a common denominator, we find LCM of all the different denominators of given fractions and then make them equivalent fractions with a common denominators.

Let us consider some of the examples of subtracting unlike fractions:

1. Subtract 1/10 from 2/5.

Solution:

2/5 - 1/10

The L.C.M. of the denominators 10 and 5 is 10.

2/5 = (2 × 2)/(5 × 2) = 4/10, (because 10 ÷ 5 = 2)

1/10 = (1 × 1)/(10 × 1) = 1/10, (because 10 ÷ 10 = 1)

Thus, 2/5 - 1/10

= 4/10 - 1/10

= (4 - 1)/10

= 3/10


2. Subtract \(\frac{3}{8}\) from \(\frac{5}{12}\).

Solution:

Let us find the LCM of denominators 8 and 12. LCM is 24.

\(\frac{3}{8}\) = \(\frac{3 × 3}{8 × 3}\) = \(\frac{9}{24}\) and

\(\frac{5}{12}\) = \(\frac{5 × 2}{12 × 2}\) = \(\frac{10}{24}\)

Now, subtract \(\frac{9}{24}\) and \(\frac{10}{24}\).

\(\frac{10}{24}\) - \(\frac{9}{24}\)                                    

= \(\frac{10 - 9}{24}\)

= \(\frac{1}{24}\)

Let us illustrate the above example pictorially as shown below.

Subtraction of Fractions

The whole strip above has 24 equal parts. The fraction \(\frac{5}{12}\) is equal to \(\frac{10}{24}\). So the shaded portion represents \(\frac{10}{24}\). We take away \(\frac{3}{8}\) or \(\frac{9}{24}\) of the above strip. The remaining part represents \(\frac{1}{24}\) of the whole strip.


3. Subtract 4/9 from 5/7.

Solution:

5/7 - 4/9

The L.C.M. of the denominators 9 and 7 is 63.

5/7 = (5 × 9)/(7 × 9) = 45/63, (because 63 ÷ 7 = 9)

4/9 = (4 × 7)/(9 × 7) = 28/63, (because 63 ÷ 9 = 7)

Thus, 5/7 - 4/9

= 45/63 - 28/63

= (45 - 28)/63

= 17/63


4. Subtract 5/8 from 1.

Solution:

1 - 5/8

= 1/1 - 5/8

The L.C.M. of the denominators 1 and 8 is 8.

1/1 = (1 × 8)/(1 × 8) = 8/8, (because 8 ÷ 1 = 8)

5/8 = (5 × 1)/(8 × 1) = 5/8, (because 8 ÷ 8 = 1)

Thus, 1/1 - 5/8

= 8/8 - 5/8

= (8 - 5)/8

= 3/8

 

5. Subtract 19/36 from 23/24.

Solution:

23/24 - 19/36

The L.C.M. of the denominators 24 and 36 is 72.

23/24 = (23 × 3)/(24 × 3) = 69/72, (because 72 ÷ 24 = 3)

19/36 = (19 × 2)/(36 × 2) = 38/72, (because 72 ÷ 36 = 2)

Thus, 23/24 - 19/36

= 69/72 - 38/72

= (69 - 38)/72

= 31/72


6. Subtract 9/35 from 3/7.

Solution:

3/7 - 9/35

The L.C.M. of the denominators 7 and 35 is 35.

3/7 = (3 × 5)/(7 × 5) = 15/35, (because 35 ÷ 7 = 5)

9/35 = (9 × 1)/(35 × 1) = 9/35, (because 35 ÷ 35 = 1)

Thus, 3/7 - 9/35

= 15/35 - 9/35

= (15 - 9)/35

= 6/35 

Subtraction of Unlike Fractions


7. Subtract \(\frac{2}{5}\) from 7.

Solution:

\(\frac{7}{1}\) - \(\frac{2}{5}\)

= \(\frac{7  × 5 - 2 × 1}{5}\) LCM of 1 and 5 is 5

= \(\frac{35 -2}{5}\)

= \(\frac{33}{5}\)

= 6\(\frac{3}{5}\)

Hence, 7 - \(\frac{2}{5}\) = 6\(\frac{3}{5}\)


Note: We write the whole number in the fraction form by keeping 1 in the denominator.


Subtraction of Fractions having the Different Denominator:

8. Subtract \(\frac{2}{3}\) - \(\frac{1}{4}\)

\(\frac{2}{3}\) = \(\frac{8}{12}\) [\(\frac{2 × 4}{3 × 4}\) = \(\frac{8}{12}\)]

\(\frac{1}{4}\) = \(\frac{3}{12}\) [\(\frac{1 × 3}{4 × 3}\) = \(\frac{3}{12}\)]

\(\frac{2}{3}\) - \(\frac{1}{4}\) = \(\frac{8}{12}\) - \(\frac{3}{12}\)

= \(\frac{8 - 3}{12}\)

= \(\frac{5}{12}\)

Method 1:

Step I: Find the L.C.M. of the denominators 3 and 4.

L.C.M. of 3 and 4 is 12

Step II: Write the equivalent fractions of \(\frac{2}{3}\) and \(\frac{1}{4}\) with denominator 12.

Step III: Subtract

Step IV: Write the difference in lowest terms.


9. Subtract \(\frac{5}{6}\) - \(\frac{1}{8}\)

\(\frac{5}{6}\) - \(\frac{1}{8}\) = \(\frac{(24 ÷ 6) × 5 – (24 ÷ 8) × 1}{24}\)

= \(\frac{(4 × 5) – (3 × 1)}{24}\)

= \(\frac{20 - 3}{24}\)

= \(\frac{17}{24}\)


Method 2:

L.C.M. of 6 and 8


Subtraction of Mixed Numbers:

Method I:

Subtract 8\(\frac{1}{2}\) - 3\(\frac{1}{4}\)

8\(\frac{1}{2}\) - 3\(\frac{1}{4}\) = (8 – 3) + [\(\frac{1}{2}\) - \(\frac{1}{4}\)]

= 5 + [\(\frac{1}{2}\) - \(\frac{1}{4}\)]

= 5 + [\(\frac{2}{4}\) - \(\frac{1}{4}\)]

= 5 + \(\frac{1}{4}\)

= 5\(\frac{1}{4}\)

Method II:

Subtract 8\(\frac{1}{2}\) - 3\(\frac{1}{4}\)

L.C.M. of 4 and 2 is 4.

8\(\frac{1}{2}\) - 3\(\frac{1}{4}\) = \(\frac{17}{2}\) - \(\frac{13}{4}\)

= \(\frac{34}{4}\) - \(\frac{13}{4}\)

= \(\frac{34 - 13}{4}\)]

= \(\frac{21}{4}\)

= 5\(\frac{1}{4}\)


2. What is 1\(\frac{4}{5}\) less than 4\(\frac{1}{2}\)?

Find 4\(\frac{1}{2}\) - 1\(\frac{4}{5}\)

4\(\frac{1}{2}\) - 1\(\frac{4}{5}\) = \(\frac{9}{2}\) - \(\frac{9}{5}\)            L.C.M. of 2 and 5 is 10.

             = \(\frac{45}{10}\) - \(\frac{18}{10}\)

             = \(\frac{45 - 18}{10}\)

             = \(\frac{27}{10}\)

            = 2\(\frac{7}{10}\)



Questions and Answers on Subtraction of Unlike Fractions:

1. Find the difference:

(i) \(\frac{3}{8}\) - \(\frac{1}{8}\)

(ii) \(\frac{17}{23}\) - \(\frac{6}{23}\)

(iii) \(\frac{1}{2}\) - \(\frac{3}{16}\)

(iv) \(\frac{5}{14}\) - \(\frac{2}{7}\)

(v) \(\frac{5}{6}\) - \(\frac{3}{4}\)

(vi) \(\frac{2}{3}\) - \(\frac{1}{5}\)

(vii) 5 - \(\frac{3}{4}\)

(viii) 2 - \(\frac{15}{21}\)

(ix) 4\(\frac{2}{3}\) - 2



Answers:

1. (i) \(\frac{1}{4}\)

(ii) \(\frac{11}{23}\)

(iii) \(\frac{5}{16}\)

(iv) \(\frac{1}{14}\)

(v) \(\frac{1}{12}\)

(vi) \(\frac{7}{15}\)

(vii) \(\frac{17}{4}\)

(viii) \(\frac{27}{21}\)

(ix) 2\(\frac{2}{3}\)


2. Subtract the following Unlike Fractions:

(i) \(\frac{4}{7}\) - \(\frac{1}{3}\)

(ii) \(\frac{3}{4}\) - \(\frac{1}{2}\)

(iii) 8 - \(\frac{2}{3}\)

(iv) 1\(\frac{5}{6}\) - 1\(\frac{1}{2}\)

(v) 4\(\frac{3}{4}\) - \(\frac{1}{2}\)

(vi) 2\(\frac{1}{3}\) - 1\(\frac{1}{2}\)

(vii) 13\(\frac{4}{7}\) - 6

(viii) 7\(\frac{2}{5}\) - 3\(\frac{1}{2}\)

(ix) \(\frac{9}{2}\) - 4

(x) \(\frac{2}{5}\) - \(\frac{3}{10}\)


Answer: 

2. (i) \(\frac{5}{21}\)

(ii) \(\frac{1}{4}\) 

(iii) 7\(\frac{1}{3}\)

(iv) \(\frac{1}{3}\)

(v) 4\(\frac{1}{4}\)

(vi) \(\frac{5}{6}\)

(vii) 7\(\frac{4}{7}\)

(viii) 3\(\frac{9}{10}\)

(ix) \(\frac{1}{2}\)

(x) \(\frac{1}{10}\)

 Related Concepts




4th Grade Math Activities

From Subtraction of Unlike Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 10:39 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More