Substitution Method

Observe the steps how to solve the system of linear equations by using the substitution method.


(i) Find the value of one variable in terms of the other from one of the given equations. 

(ii) Substitute the value of this variable in the other equation. 

(iii) Solve the equation and get the value of one of the variables. 

(iv) Substitute the value of this variable in any of the equation to get the value of other variable.

Follow the instructions along with the method of solution of the two simultaneous equations given below to find the value of x and y. 

7x – 3y = 31 --------- (i) 

9x – 5y = 41 --------- (ii) 


Step I:

From equation (i) 7x – 3y = 31, express y in terms of x 

From equation (i) 7x – 3y = 31, we get;

– 3y = 31 – 7x

or, 3y = 7x – 31

or, 3y/3 = (7x – 31)/3

Therefore, y = (7x – 31)/3 --------- (iii)


Step II:

Substitute the value of y obtained from equation (iii) (7x – 31)/3 in equation (ii) 9x – 5y = 41

Putting the value of y obtained from equation (iii) in equation (ii) we get;

9x – 5 × (7x – 31)/3 = 41 --------- (iv)


Step III:

Now, solve equation (iv) 9x – 5 × (7x – 31)/3 = 41

Simplifying equation (iv) 9x – 5 × (7x – 31)/3 = 41 we get;

(27x – 35x + 155)/3 = 41

or, 27x – 35x + 155 = 41 × 3

or, 27x – 35x + 155 = 123

or, –8x + 155 = 123

or, –8x + 155 – 155 = 123 – 155

or, –8x = –32

or, 8x/8 = 32/8

Therefore, x = 4


Step IV:

Putting the value of x in equation (iii) 

y = (7x – 31)/3, find the value of y

Putting x = 4 in equation (iii), we get;

y = (7 × 4 – 31)/3

or, y = (28 – 31)/3

or, y = –3/3

Therefore, y = –1


Step V:

Write down the required solution of the two simultaneous linear equations by using the substitution method

Therefore, x= 4 and y = –1

In this case, the general method obtained for solving simultaneous equations as follows:

1. To express y in terms of x from any one of the equations.

2. To substitute this value of y in the other equation.

3. One value of x will be obtained, by solving the equation in x thus obtained.

4. Substituting this value of x in any of the equations, we will get the corresponding value of y.

5. Solution of the two given simultaneous equations will be given by this pair of values of x and y.

6. Similarly expressing x in terms of y from an equation and substituting in the other, we can find the value of y. Putting this value of in any one of the equations, we can find the value of x and thus we can solve the two linear simultaneous equations.

As in this method of solution, we express one unknown quantity in terms of the other and substitute in an equation; o we call this method as ‘Method of Substitution’.

Keep these instructions in your mind and notice how the following simultaneous equations can be solved.


Worked-out examples on two variables linear equations by using the substitution method:

2/x + 3/y = 2 --------- (i)

5/x + 10/y = 5⁵/₆ --------- (ii)

From equation (i), we get:

3/y = 2 – 2/x

or, 3/y = (2x – 2)/x

or, y/3 = x/(2x – 2)

or, y = 3x/(2x – 2) --------- (iii)

Substituting 3x/(2x – 2) in place of y in equation (ii),

or, 5/x + 10 ÷ 3x/(2x – 2) = 35/6

or, 5/x + 10(2x – 2)/3x = 35/6

or, 1/x + 2(2x – 2)/3x = 7/6

or, (3 + 4x – 4)/3x = 7/6

or, (4x – 1)/3x = 7/6

or, (4x – 1)/x = 7/2

or, 8x – 2 = 7x

or, 8x – 2 + 2 = 7x + 2 or, 8x – 7x = 7x – 7x + 2

or, x = 2

Putting the value of x = 2 in equation (iii), 

or, y = 3 ∙ 2/2 ∙ 2 – 2

or, y = 6/4 – 2

or, y = 6/2

or, y = 3

Therefore, the required solution is x = 2 and y = 3.


 Simultaneous Linear Equations

Simultaneous Linear Equations

Comparison Method

Elimination Method

Substitution Method

Cross-Multiplication Method

Solvability of Linear Simultaneous Equations

Pairs of Equations

Word Problems on Simultaneous Linear Equations

Word Problems on Simultaneous Linear Equations

Practice Test on Word Problems Involving Simultaneous Linear Equations


 Simultaneous Linear Equations - Worksheets

Worksheet on Simultaneous Linear Equations

Worksheet on Problems on Simultaneous Linear Equations










8th Grade Math Practice

From Substitution Method to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 22, 24 01:00 AM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 22, 24 12:12 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  5. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More