Step-deviation Method

Here we will learn the step-deviation method for finding the mean of classified data.

We know that the direct method of finding the mean of classified data gives

Mean A = \(\frac{\sum m_{i}f_{i}}{\sum f_{i}}\)

where m1, m2, m3, m4, ……, mn are the class marks of the class intervals and f1, f2, f3, f4, …….., fn  are the frequencies of the corresponding classes.

For class intervals of equal size of width l, let the assumed mean be a.

Taking di = mi – a, where m= class mark of the ith class interval and di’ = \(\frac{d_{1}}{l}\) = \(\frac{m_{1} - a}{l}\), the above formula for mean becomes

A = \(\frac{\sum m_{i}f_{i}}{\sum f_{i}}\)

   = \(\frac{\sum (l{d_{i}}' + a)f_{i}}{\sum f_{i}}\)

   = \(\frac{\sum (l{d_{i}}'f_{i} + af_{i}) }{\sum f_{i}}\)

   = \(\frac{\sum l{d_{i}}'f_{i} + \sum af_{i}}{\sum f_{i}}\)

   = \(\frac{\sum af_{i}f_{i}}{\sum f_{i}}\) + \(\frac{\sum l{d_{i}}'f_{i}}{\sum f_{i}}\)

   = \(\frac{a\sum f_{i}}{\sum f_{i}}\) + \(\frac{l\sum {d_{i}}'f_{i}}{\sum f_{i}}\)

Therefore, A = a + l ∙ \(\frac{\sum {d_{i}}'f_{i}}{\sum f_{i}}\)

This is the formula for determining the mean by step-deviation method.

 

Solved Examples on Finding Mean Using Step Deviation Method:

Find the mean of the following distribution using the step-deviation method.

Class Interval

0 - 8

8 - 16

16 - 24

24 - 32

32 - 40

40 - 48

Frequency

10

20

14

16

18

22

Solution:

Here, the intervals are of equal size. So we can apply the step-deviation method, in which

A = a + l ∙ \(\frac{\sum {d_{i}}'f_{i}}{\sum f_{i}}\)

where a = assumed mean,

l = common size of class intervals

fi = frequency of the ith class interval

di’ = \(\frac{m_{1} - a}{l}\), mi being the calss mark of the ith class interval.

Putting the calculated values in a table, we have the following.

Class Intervals

Class Mark

(mi)

Frequency

(fi)

d= mi - a = mi - 28

di\(\frac{d_{i}}{l}\)

\(\frac{d_{i}}{8}\)

di’fi

0 - 8

4

10

-24

-3

-30

8 - 16

12

20

-16

-2

-40

16 - 24

20

14

-8

-1

-14

24 - 32

28

16

0

0

0

32 - 40

36

18

8

1

18

40 - 48

44

22

16

2

44

 \(\sum f_{i}\) = 100

 \(\sum {d_{i}}'f_{i}\) = -22


Therefore, A = a + l ∙ \(\frac{\sum {d_{i}}'f_{i}}{\sum f_{i}}\)

                   = 28 + 8 ∙ \(\frac{-22}{100}\)

                   = 28 – 1.76

                   = 26.24.


Formula for Determining the Mean by Step-deviation Method


2. Find the mean percentage of the work completed for a project in a country from the following frequency distribution by using the step-deviation method.

Solution:

The frequency table with overlapping class intervals is as follows.

 

Taking the assumed mean a = 50, the calculations will be as below.

Class Intervals

Class Mark

(mi)

di = mi - a

    = mi - 50

di’ = \(\frac{m_{1} - a}{l}\)

    = \(\frac{m_{1} - 50}{20}\)

Frequency

(fi)

di’fi

0 - 20

10

-40

-2

15

-30

20 - 40

30

-20

-1

45

-45

40 - 60

50

0

0

15

0

60 - 80

70

20

1

17

17

80 - 100

90

40

2

8

16

                                                                         \(\sum f_{i}\) = 100


 \(\sum {d_{i}}'f_{i}\) = -42


Therefore, mean = a + l ∙ \(\frac{\sum {d_{i}}'f_{i}}{\sum f_{i}}\)

                         = 50 + 20 × \(\frac{-42}{100}\)

                         = 50 - \(\frac{42}{5}\)

                         = 50 – 8.4

                         = 41.6.





9th Grade Math

From Step-deviation Method to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Measuring Length | Relationship between Meter & CM | Unit of Length

    Nov 08, 24 01:25 AM

    Non-standard Units of Length
    Measuring length will help us to know the measure of how tall a boy or a girl is or, how long the cloth is. Meter is the standard unit of length. If we divide the length of a meter in 100 equal parts

    Read More

  2. Concept of Fractions |Concept of Half| Concept of One Fourth|Two Third

    Nov 07, 24 01:38 PM

    One-half
    Concept of fractions will help us to express different fractional parts of a whole. One-half When an article or a collection of objects is divided into two equal parts is called as half of the whole.

    Read More

  3. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 06, 24 11:59 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  4. 2nd Grade Division Word Problems | Worksheet on Division Word Problems

    Nov 05, 24 01:49 PM

    Division is the opposite of multiplication. In 2nd Grade Division Word Problems we will learn how to solve different types of word problems problems on division.

    Read More

  5. 2nd Grade Division Worksheet | Dividing 2-digit by 1-digit Numbers

    Nov 05, 24 01:15 AM

    Division Fact 12 ÷ 3
    In worksheet on 2nd grade division worksheet we will solve the multiple choice questions on division, problems on division fact for the repeated subtraction, terms used in division, division on the nu…

    Read More