We will learn how to solve identities involving square of sines and cosines of multiples or submultiples of the angles involved.
We use the following ways to solve the identities involving square of sines and cosines.
(i) Express the first two squares of L.H.S. in terms of cos 2A (or cos A).
(ii) Either retain the third term unchanged or make a change using the
formula sin\(^{2}\) A+ cos\(^{2}\) A = 1.
(iii) Keeping the numericais (if any) apart, express the sum of two cosines in
the form of product.
(iv) Then use the condition A + B +
C = π (or A + B + C = \(\frac{π}{2}\))and take
one sine or cosine term common.
(v) Finally, express the sum or difference of two sines (or cosines) in the brackets as product.
1. If A + B + C = π, prove that,
cos\(^{2}\) A + cos\(^{2}\) B - cos\(^{2}\) C = 1 - 2 sin A sin B cos C.
Solution:
L.H.S. = cos\(^{2}\) A + cos\(^{2}\) B - cos\(^{2}\) C
= cos\(^{2}\) A + (1 - sin\(^{2}\) B) - cos\(^{2}\) C
= 1 + [cos\(^{2}\) A - sin\(^{2}\) B] - cos\(^{2}\) C
= 1 + cos (A + B) cos (A - B) - cos\(^{2}\) C
= 1 + cos (π - C) cos (A - B) - cos\(^{2}\) C, [Since A + B + C = π ⇒ A + B = π - C]
= 1 - cos C cos (A - B) - cos\(^{2}\) C
= 1 - cos C [cos (A - B) + cos C]
= 1 - cos C [cos (A - B) + cos {π - (A + B)}], [Since A + B + C = π ⇒ C = π - (A + B)]
= 1 - cos C [cos (A - B) - cos (A + B)]
= 1 - cos C [2 sin A sin B]
= 1 - 2 sin A sin B cos C = R.H.S. Proved.
2. If A + B + C = π, prove that,
sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{A}{2}\) = 1 - 2 sin \(\frac{A}{2}\) - sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)
Solution:
L.H.S. = sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{B}{2}\) +
sin\(^{2}\) \(\frac{C}{2}\)
= \(\frac{1}{2}\)(1 - cos A) + \(\frac{1}{2}\)(1 - cos B) + sin\(^{2}\) \(\frac{C}{2}\), [Since, 2 sin\(^{2}\) \(\frac{A}{2}\) = 1 - cos A
⇒ sin\(^{2}\) \(\frac{A}{2}\) = \(\frac{1}{2}\)(1
- cos A)
Similarly, sin\(^{2}\) \(\frac{B}{2}\)
= \(\frac{1}{2}\)( 1 - cos B)]
= 1 - \(\frac{1}{2}\)(cos A + cos B) + sin\(^{2}\) \(\frac{C}{2}\)
= 1 - \(\frac{1}{2}\) ∙ 2 cos \(\frac{A + B}{2}\) ∙ cos \(\frac{A - B}{2}\) + sin\(^{2}\) \(\frac{C}{2}\)
=1 - sin \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) + sin 2 \(\frac{C}{2}\)
[A + B + C = π ⇒ \(\frac{A + B}{2}\) = \(\frac{π}{2}\) - \(\frac{C}{2}\).
Therefore, cos \(\frac{A + B}{2}\) = cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)]
= 1 - sin \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]
= 1 - sin \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - cos \(\frac{A + B}{2}\)] [Since, sin \(\frac{C}{2}\) = cos \(\frac{A + B}{2}\)]
= 1 - sin \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\) ∙ sin \(\frac{B}{2}\)]
= 1 - 2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\) = R.H.S. Proved.
3. If A + B + C = π, prove that,
cos\(^{2}\) \(\frac{A}{2}\) + cos\(^{2}\) \(\frac{B}{2}\) -
cos\(^{2}\) \(\frac{C}{2}\) = 2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\)
sin \(\frac{C}{2}\)
Solution:
L.H.S. = cos\(^{2}\) \(\frac{A}{2}\) + cos\(^{2}\) \(\frac{B}{2}\) - cos\(^{2}\) \(\frac{C}{2}\)
= \(\frac{1}{2}\)(1 + cos A) + \(\frac{1}{2}\)(1 + cos B) - cos\(^{2}\) \(\frac{C}{2}\), [Since, 2 cos\(^{2}\) \(\frac{A}{2}\)
= 1 + cos A ⇒ cos\(^{2}\)
\(\frac{A}{2}\) = \(\frac{1}{2}\)(1 + cos A)
Similarly, cos\(^{2}\) \(\frac{B}{2}\) = \(\frac{1}{2}\)(1 + cos B)]
= 1 + \(\frac{1}{2}\)(cos A + cos B) - cos\(^{2}\) \(\frac{C}{2}\)
= 1 + \(\frac{1}{2}\) ∙ 2 cos \(\frac{A + B}{2}\) cos \(\frac{A - B}{2}\) - 1 + sin\(^{2}\) \(\frac{C}{2}\)
= cos \(\frac{A + B}{2}\) cos \(\frac{A - B}{2}\) + sin\(^{2}\) \(\frac{C}{2}\)
= sin C/2 cos \(\frac{A - B}{2}\) + sin\(^{2}\) \(\frac{C}{2}\)
[Since, A + B + C = π ⇒ \(\frac{A + B}{2}\) = \(\frac{π}{2}\) - \(\frac{C}{2}\).
Therefore, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)]
= sin \(\frac{C}{2}\) [cos \(\frac{A - B}{2}\) + sin \(\frac{C}{2}\)]
= sin \(\frac{C}{2}\) [cos \(\frac{A - B}{2}\) + cos \(\frac{A + B}{2}\)], [Since, sin \(\frac{C}{2}\) = cos \(\frac{A - B}{2}\)]
= sin \(\frac{C}{2}\) [2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\)]
= 2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\) sin \(\frac{C}{2}\) = R.H.S. Proved.
● Conditional Trigonometric Identities
11 and 12 Grade Math
From Square of Identities Involving Squares of Sines and Cosines to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 23, 24 03:45 PM
Nov 23, 24 03:14 PM
Nov 23, 24 02:51 PM
Nov 23, 24 12:22 AM
Nov 22, 24 12:34 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.