Solving Quadratic Equations

Many word problems Involving unknown quantities can be translated for solving quadratic equations

Methods of solving quadratic equations are discussed here in the following steps.

Step I: Denote the unknown quantities by x, y etc.

Step II: use the conditions of the problem to establish in unknown quantities.

Step III: Use the equations to establish one quadratic equation in one unknown.

Step IV: Solve this equation to obtain the value of the unknown in the set to which it belongs.


Now we will learn how to frame the equations from word problem:

1. The product of two consecutive integers is 132. Frame an equation for the statement. What is the degree of the equation?


Solution:

Method I: Using only one unknown

Let the two consecutive integers be x and x + 1

Form the equation, the product of x and x + 1 is 132.

Therefore, x(x + 1) = 132

⟹ x\(^{2}\) + x - 132 = 0, which is quadratic in x.

This is the equation of the statement, x denoting the smaller integer.

 

Method II: Using more than one unknown

Let the consecutive integers be x and y, x being the smaller integer.

As consecutive integers differ by 1, y - x = 1 ........................................... (i)

Again, from the question, the product of x and y is 132.

So, xy = 132 ........................................... (ii)

From (i), y = 1 + x.

Putting y = 1 + x in (ii),

x(1 + x) = 132

⟹ x\(^{2}\) + x - 132 = 0, which is quadratic in x.

Solving the quadratic equation, we get the value of x. Then the value of y can be determined by substituting the value of x in y = 1 + x.

 

 

2. The length of a rectangle is greater than its breadth by 3m. If its area be 10 sq. m, find the perimeter.

Solution:

Suppose, the breadth of the rectangle = x m.

Therefore, length of the rectangle = (x + 3) m.

So, area = (x + 3)x sq. m

Hence, by the condition of the problem

(x + 3)x = 10

⟹ x\(^{2}\) + 3x - 10 = 0

⟹ (x + 5)(x - 2) = 0

So, x = -5,2

But x = - 5 is not acceptable, since breadth cannot be negative.

Therefore x = 2

Hence, breadth = 2 m

and length = 5 m

Therefore, Perimeter = 2(2 + 5) m = 14 m.

x = -5 does not satisfy the conditions of the problem length or breadth can never be negative. Such a root is called an extraneous root. In solving a problem, each root of the quadratic equation is to be verified whether it satisfies the conditions of the given problem. An extraneous root is to be rejected.

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring











9th Grade Math

From Solving Quadratic Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 02:50 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More