We will learn how to solve identities involving sines and cosines of multiples or submultiples of the angles involved.
We use the following ways to solve the identities
involving sines and cosines.
(i) Take the first two terms of L.H.S. and express the sum of two sines (or
cosines) as product.
(ii) In the third term of L.H.S. apply the formula of sin 2A (or cos 2A).
(iii) Then use the condition A + B + C = π and take one sine (or
cosine) term common.
(iv) Finally, express the sum or difference of two sines (or cosines) in the brackets as product.
1. If A + B + C= π prove that,
sin A + sin B - sin C = 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)
Solution:
We have,
A + B + C = π
⇒ C = π - (A + B)
⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\) - (\(\frac{A + B}{2}\))
Therefore, sin (\(\frac{A + B}{2}\)) = sin (\(\frac{π }{2}\) - \(\frac{C}{2}\)) = cos \(\frac{C}{2}\)
Now, L.H.S. = sin A + sin B - sin C
= (sin A + sin B) - sin C
= 2 sin (\(\frac{A + B}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C
= 2 sin (\(\frac{π - C}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C
= 2 sin (\(\frac{π}{2}\) - \(\frac{C}{2}\)) cos \(\frac{A - B}{2}\) - sin C
= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - sin C
= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - 2 sin \(\frac{C}{2}\) cos \(\frac{C}{2}\)
= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]
= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin (\(\frac{π}{2}\) - \(\frac{A + B}{2}\))]
= 2 cos \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\)) - cos (\(\frac{A + B}{2}\))]
= 2 cos \(\frac{C}{2}\)[cos (\(\frac{A}{2}\) - \(\frac{B}{2}\)) - cos (\(\frac{A}{2}\) + \(\frac{B}{2}\))]
= 2 cos \(\frac{C}{2}\) [(cos \(\frac{A}{2}\) cos \(\frac{B}{2}\) + sin \(\frac{A}{2}\) sin \(\frac{B}{2}\)) - (cos \(\frac{A}{2}\) cos \(\frac{B}{2}\) + sin \(\frac{A}{2}\) sin \(\frac{B}{2}\))]
= 2 cos \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\)]
= 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) cos \(\frac{C}{2}\) = R.H.S. Proved.
2. If
A, B, C be the angles of a triangle, prove that,
cos A + cos B + cos C = 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)
Solution:
Since A, B, C are the angles of a triangle,
Therefore, A + B + C = π
⇒ C = π - (A + B)
⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\) - (\(\frac{A + B}{2}\))
Thus, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π }{2}\) - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)
Now, L. H. S. = cos A + cos B + cos C
= (cos A + cos B) + cos C
= 2 cos (\(\frac{A + B}{2}\)) cos (\(\frac{A - B}{2}\)) + cos C
= 2 cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) cos (\(\frac{A - B}{2}\)) + cos C
= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) + 1 - 2 sin\(^{2}\) \(\frac{C}{2}\)
= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) - 2 sin\(^{2}\) \(\frac{C}{2}\) + 1
= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\)) - sin \(\frac{C}{2}\)] + 1
= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\)) - sin (\(\frac{π}{2}\) - \(\frac{A + B}{2}\))] + 1
= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\)) - cos (\(\frac{A + B}{2}\))] + 1
= 2 sin \(\frac{C}{2}\) [2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\)] + 1
= 4 sin \(\frac{C}{2}\) sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) + 1
= 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\) Proved.
3. If A + B
+ C = π prove that,
sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\) = 1 + 4
sin \(\frac{π - A}{4}\) sin \(\frac{π - B}{4}\) sin \(\frac{π -
C}{4}\)
Solution:
A + B + C = π
⇒ \(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)
Therefore, sin \(\frac{C}{2}\) = sin (\(\frac{π }{2}\) - \(\frac{A + B}{2}\)) = cos \(\frac{A + B}{2}\)
Now, L. H. S. = sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)
= 2 sin \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{C}{2}\))
= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + cos \(\frac{π - C}{2}\)
= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + 1 – 2 sin\(^{2}\) \(\frac{π - C}{4}\)
= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) - 2 sin\(^{2}\) \(\frac{π - C}{4}\) + 1
= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - sin \(\frac{π - C}{4}\)] + 1
= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos {\(\frac{π}{2}\) - \(\frac{π - C}{4}\)}] + 1
= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos (\(\frac{π}{4}\) + \(\frac{C}{4}\))] + 1
= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos \(\frac{π + C}{4}\)] + 1
= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A - B + π + C}{8}\) sin \(\frac{π + C - A + B}{8}\)] + 1
= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A + C + π - B}{8}\) sin \(\frac{B + C + π - A}{8}\)] + 1
= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B + π - B}{8}\) sin \(\frac{π - A + π - A}{8}\)] + 1
= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B}{4}\) sin \(\frac{π - A}{4}\)] + 1
= 4 sin \(\frac{π - C}{4}\) sin \(\frac{π - B}{4}\) sin \(\frac{π - A}{4}\) + 1
= 1 + 4 sin \(\frac{π - A}{4}\) sin \(\frac{π - B}{4}\) sin \(\frac{π - C}{4}\) Proved.
4. If A +
B + C = π show that,
cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\) = 4 cos
\(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\)
Solution:
A + B + C = π
\(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)
Therefore, cos \(\frac{C}{2}\) = cos (\(\frac{π}{2}\) - \(\frac{A + B}{2}\)) =
sin \(\frac{A + B}{2}\)
Now, L. H. S. = cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\)
= (cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\)) + cos \(\frac{C}{2}\)
= 2 cos \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + sin \(\frac{A + B}{2}\) [Since, cos \(\frac{C}{2}\) = sin \(\frac{A + B}{2}\)]
= 2 cos \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + 2 sin \(\frac{A + B}{4}\) cos \(\frac{A + B}{4}\)
= 2 cos \(\frac{A + B}{4}\)[cos \(\frac{A - B}{4}\) + sin \(\frac{A + B}{4}\)]
= 2 cos \(\frac{A + B}{4}\) [cos \(\frac{A + B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{A + B}{4}\))]
= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{\frac{A - B}{4} + \frac{π}{2} - \frac{A + B}{4}}{2}\) cos \(\frac{\frac{π}{2} - \frac{A + B}{4} - \frac{A - B}{4}}{2}\)]
= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{π - B}{4}\) cos \(\frac{π - A}{4}\)]
= 4 cos \(\frac{A + B}{4}\) cos \(\frac{C + A}{4}\) cos \(\frac{B + C}{4}\), [Since, π - B = A + B + C - B = A + C; Similarly, π - A = B + C]
= 4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\). Proved.
● Conditional Trigonometric Identities
11 and 12 Grade Math
From Sines and Cosines of Multiples or Submultiples to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jan 14, 25 11:53 PM
Jan 14, 25 11:02 PM
Jan 14, 25 01:57 PM
Jan 14, 25 12:29 AM
Jan 14, 25 12:21 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.