Simplification of Fractions

In simplification of fractions parenthesis can also be used. The three parenthesis (1st), {2nd}, [3rd] are used commonly.

Examples on simplification of fractions:

1. 3 1/3 ÷ 5/3 - 1/10 of 2 ½ + 7/4

Solution:

3 1/3 ÷ 5/3 - 1/10 of 2 ½ + 7/4

= (3 × 3 + 1)/3 ÷ 5/3 – 1/10 of (2 × 2 + 1)/2 + 7/4

= 10/3 ÷ 5/3 - 1/10 of 5/2 + 7/4


                      [‘of’ simplified]

= 10/3 × 3/5 – ½ × ½ + 7/4                  [‘÷’ simplified]




= 2/1 - ¼ + 7/4                   [‘×’ simplified]

= (2 × 4)/(1 × 4) - (1 × 1)/(4 × 1) + (7 × 1)/(4 × 1)

= 8/4 - ¼ + 7/4

[Now the denominators are same of all the fractions]

= (8 – 1 + 7)/4                  [‘+’ and ‘-‘ simplified]

= 14/4

= 7/2

= 312

2. 45 of 3/5 ÷ 1 2/3 + 3 of 1/3 – 10

Solution:

45 of 3/5 ÷ 1 2/3 + 3 of 1/3 – 10

= 45 of 3/5 ÷ (1 × 3 + 2)/3 + 3 of 1/3 – 10

= 45 of 3/5 ÷ 5/3 + 3 of 1/3 – 10

= 45 × 3/5 ÷ 5/3 + 3 × 1/3 – 10                [‘of’ simplified]




= 9 × 3 × 3/5 + 3 × 1/3 – 10             [‘÷’ simplified],  [‘×’ simplified]

= (27 × 3)/5 + 1 – 10


= 81/5 + 1 – 10

= (81 × 1)/(5 × 1) + (1 × 5)/(1 × 5) – (10 × 5)/(1 × 5)

= 81/5 + 5/5 – 50/5

[Now the denominators are same of all the fractions]

= (81 + 5 – 50)/5                     [‘+’ and ‘-‘ simplified]

= 36/5




= 7 1/5




3.

43 of 1/86 ÷ 1/14 × 2/7 + 9/4 – ¼

Solution:

43 of 1/86 ÷ 1/14 × 2/7 + 9/4 – ¼

= 43 × 1/86 ÷ 1/14 × 2/7 + 9/4 – ¼








= 2/1 + 9/4 – ¼


= (2 × 4)/(1 × 4) + (9 × 1)/(4 × 1) - (1 × 1)/(4 × 1)

= 8/4 + 9/4 - 1/4

[Now the denominators are same of all the fractions]

= (8 + 9 - 1)/4

= 16/4

= 4



4. 9/10 ÷ (3/5 + 2 1/10)

Solution:

9/10 ÷ (3/5 + 2 1/10)

= 9/10 ÷ (3/5 + 21/10)

= 9/10 ÷ ((6 +21)/10)

[Solve within brackets]

= 9/10 ÷ 27/10

= 9/10 × 10/27




= 1/3



5. (7 ¼ - 6 1/4) of (2/5 + 3/15)

Solution:

(7 ¼ - 6 1/4) of (2/5 + 3/15)

= (29/4 – 25/4) of (2/5 + 3/15)

= ((29 – 25)/4) × ((6 + 3)/15)

[Solve within brackets]

= 4/4 × 9/15


          [Reduce to lowest term]

= 1 × 3/5


= 3/5



6. {18 + (2 ½ + 4/5)} of 1/1000

Solution:

{18 + (2 ½ + 4/5)} of 1/1000

= {18 + (5/2 + 4/5)} of 1/1000

= {18 + ((25 + 8)/10)} of 1/1000

= {18 + 33/10} of 1/1000

= {(180 + 33)/10} of 1/1000

= 213/10 of 1/1000

= 213/10 × 1/1000

= (213 × 1)/(10 × 1000)

= 213/10000

= 0.0213



These are the examples of simplification of fractions.

Multiplication is Repeated Addition.

Multiplication of Fractional Number by a Whole Number.

Multiplication of a Fraction by Fraction.

Properties of Multiplication of Fractional Numbers.

Multiplicative Inverse.

Worksheet on Multiplication on Fraction.

Division of a Fraction by a Whole Number.

Division of a Fractional Number.

Division of a Whole Number by a Fraction.

Properties of Fractional Division.

Worksheet on Division of Fractions.

Simplification of Fractions.

Worksheet on Simplification of Fractions.

Word Problems on Fraction.

Worksheet on Word Problems on Fractions.





5th Grade Numbers Page

5th Grade Math Problems

From Simplification of Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Simplification | Simplify Expressions | BODMAS Questions

    Apr 03, 25 12:20 PM

    Worksheet on Simplification
    In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

    Read More

  2. Divisible by 2 Video |Test of Divisibility by 2 Trick| Rules| Examples

    Apr 03, 25 10:25 AM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More

  3. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Apr 03, 25 10:22 AM

    What is BODMAS Rule in Math?
    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  4. 5th Grade BODMAS Rule Worksheet | PEMDAS | Order of operations|Answers

    Apr 03, 25 10:17 AM

    In 5th Grade BODMAS Rule Worksheet you will get different types of problems on mathematical expressions involving different operations, mathematical expression with 'brackets' and 'of' and simplifying…

    Read More

  5. Before and After Video | Math Worksheets on Number | Before and After

    Apr 03, 25 12:44 AM

    before and after number worksheet
    Free math worksheets on numbers before and after help the kids to check how much they are good at numbers. The purpose of this math activity is to help your child to say a number in order and also hel

    Read More