Simplification of Algebraic Fractions

Here we will learn simplification of algebraic fractions to its lowest term.

1. Simplify the algebraic fraction:

\(\frac{8a^{2}b}{4a^{2}  +  6ab}\)

Solution:

\(\frac{8a^{2}b}{4a^{2}  +  6ab}\)

We see in the given fraction the numerator is monomial and the denominator is binomial, which can be factorized.

\(\frac{\not{2}\times 2\times 2\times \not{a}\times a\times b}{\not{2}\not{a}(2a  +  3b)}\)

We can see that ‘2’ and ‘a’ are the common factors in the numerator and denominator so, we cancel the common factor ‘2’ and ‘a' from the numerator and denominator.

= \(\frac{4ab}{(2a  +  3b)}\)

2. Reduce the algebraic fraction to its lowest term:

\(\frac{x^{2}  +  8x  +  12}{x^{2}  -  4}\)

Solution:

\(\frac{x^{2}  +  8x  +  12}{x^{2}  -  4}\)

Each of the numerator and denominator is polynomial, which can be factorized.

= \(\frac{x^{2}  +  6x  +  2x  +  12}{(x)^{2}  -  (2)^{2}}\)

 = \(\frac{x(x  +  6 )  +  2(x  +  6)}{(x  +  2)(x  -  2)}\)

= \(\frac{(x  +  2)(x  +  6)}{(x  +  2)(x  -  2)}\)

We observed that in the numerator and denominator (x + 2) is the common factor and there is no other common factor. Now, we cancel the common factor from the numerator and denominator.

= \(\frac{(x  +  6)}{(x  -  2)}\)


3. Reduce the algebraic fraction to its lowest form:

\(\frac{5x^{2}  -  45}{x^{2}  -  x  -  12}\)

Solution:

\(\frac{5x^{2}  -  45}{x^{2}  -  x  -  12}\)

Each of the numerator and denominator is polynomial, which can be factorized.

= \(\frac{5(x^{2}  -  9)}{x^{2}  -  4x  +  3x  -  12}\)

= \(\frac{5[(x)^{2}  -  (3)^{2}]}{x(x  -  4)  +  3(x  -  4)}\)

= \(\frac{5(x  +  3)(x  -  3)}{(x  +  3)(x  -  4)}\)

Here, in the numerator and denominator (x + 3) is the common factor and there is no other common factor. Now, we cancel the common factor from the numerator and denominator.

= \(\frac{5(x  -  3)}{(x  -  4)}\)


4. Simplify the algebraic fraction:

\(\frac{x^{4}  -  13x^{2}  +  36}{2x^{2}  +  10x  +  12}\)

Solution:

\(\frac{5x^{2}  -  45}{x^{2}  -  x  -  12}\)

Each of the numerator and denominator is polynomial, which can be factorized.

= \(\frac{x^{4}  -  9x^{2}  -  4x^{2}  +  36}{2(x^{2}  +  5x  +  6)}\)

= \(\frac{x^{2}(x^{2}  -  9)  -  4(x^{2}  -  9)}{2(x^{2}  +  2x  +  3x  +  6)}\)

= \(\frac{(x^{2}  -  4)(x^{2}  -  9)}{2[x(x  +  2)  +  3(x  +  2)]}\)

= \(\frac{(x^{2}  -  4)(x^{2}  -  9)}{2(x  +  2)(x  +  3)} [Since, a^{2}  -  b^{2} = (a  +  b)(a  -  b)]\)

= \(\frac{(x  +  2)(x  -  2)(x  +  3)(x  -  3)}{2(x  +  2)(x  +  3)}\)

Here, in the numerator and denominator (x + 2) and (x + 3) are the common factors and there is no other common factor. Now, we cancel the common factors from the numerator and denominator.

= \(\frac{(x  -  2)(x  -  3)(x  -  3)}{2}\)

5. Reduce the algebraic fraction to its lowest term:

\(\frac{x^{2}  +  5x  -  2}{2x^{2}  +  x  -  6} \div \frac{4x^{2}  -  9}{6x^{2}  +  7x  -  3}\)

Solution:

\(\frac{x^{2}  +  5x  -  2}{2x^{2}  +  x  -  6} \div \frac{4x^{2}  -  9}{6x^{2}  +  7x  -  3}\)

Each of the numerator and denominator of each fraction are polynomial, which can be factorized.

Now by factorizing each polynomial we get;

3x2 + 5x – 2 = 3x2 –x + 6x – 2

                 = 3(3x – 1) + 2(3x – 1)

                 = (x + 2)(3x – 1)

2x2 + x – 6 = 2x2 - 3x - 4x - 6

                = x(2x – 3) + 2(2x – 3)

                = (x + 2)(2x - 3)

4x2 – 9 = (2x)2 - (3)2

           = (2x + 3)(2x – 3)

6x2 + 7x – 3 = 6x2 – 2x + 9x – 3

                  = 2x(3x – 1) + 3(3x – 1)

                  = (2x + 3)(3x – 1)

Therefore, we have

\(\frac{(x  +  2)(3x  -  1)}{(x  +  2)(2x  -  3)} \div \frac{(2x  +  3)(2x  -  3)}{(2x  +  3)(3x  -  1)}\)

= \(\frac{(3x  -  1)}{(2x  -  3)} \times \frac{(2x  -  3)}{(3x  -  1)}\)

= \(\frac{(3x  -  1)^{2}}{(2x  -  3)^{2}}\)

= \(\frac{9x^{2}  -  6x  +  1}{4x^{2}  -  12x  +  9}\)

 

6. Reduce the algebraic fraction to its lowest form:

 \(\frac{1}{x^{2}  -  3x  +  2}  +  \frac{1}{x^{2}  -  5x  +  6}  +  \frac{1}{x^{2}  -  4x  +  3}\)

Solution:

\(\frac{1}{x^{2}  -  3x  +  2}  +  \frac{1}{x^{2}  -  5x  +  6}  +  \frac{1}{x^{2}  -  4x  +  3}\)

= \(\frac{1}{x^{2}  -  2x  -  x  +  2}  +  \frac{1}{x^{2}  -  3x  -  2x  +  6}  +  \frac{1}{x^{2}  -  x  -  3x  +  3}\)

= \(\frac{1}{x(x  -  2)  -  1(x  -  2)}  +  \frac{1}{x(x  -  3)  -  2(x  -  3)}  +  \frac{1}{x(x  -  1)  -  3(x  -  1)}\)

= \(\frac{1}{(x  -  2)(x  -  1)}  +  \frac{1}{(x  -  3)(x  -  2)}  +  \frac{1}{(x  -  1)(x  -  3)}\)

= \(\frac{1 \times (x  -  3)}{(x  -  2)(x  -  1)(x  -  3)}  +  \frac{1\times (x  -  1)}{(x  -  3)(x  -  2)(x  -  1)}  +  \frac{1\times (x  -   2)}{(x  -  1)(x  -  3)(x  -  2)}\)

= \(\frac{(x  -  3)}{(x  -  2)(x  -  1)(x  -  3)}  +  \frac{(x  -  1)}{(x  -  3)(x  -  2)(x  -  1)}  +  \frac{(x  -  2)}{(x  -  1)(x  -  3)(x  -  2)}\)

= \(\frac{(x  -  3)  +  (x  -  1)  +  (x  -  2)}{(x  -  1)(x  -  2)(x  -  3)}\)

= \(\frac{(3x  -  6)}{(x  -  1)(x  -  2)(x  -  3)}\)

= \(\frac{3(x  -  2)}{(x  -  1)(x  -  2)(x  -  3)}\)

= \(\frac{3}{(x  -  1)(x  -  3)}\)

 

7. Simplify the algebraic fraction:

\(\frac{3x}{x  -  2}  +  \frac{5x}{x^{2}  -  4}\)

Solution:

\(\frac{3x}{x  -  2}  +  \frac{5x}{x^{2}  -  4}\)

= \(\frac{3x}{x  -  2}  +  \frac{5x}{x^{2}  -  (2)^{2}}\)

= \(\frac{3x}{x  -  2}  +  \frac{5x}{(x  +  2)(x  -  2)}\)

= \(\frac{3x \times (x  +  2)}{(x  -  2)(x  +  2)}  +  \frac{5x}{(x  +  2)(x  -  2)}\)

= \(\frac{3x(x  +  2)  -  5x}{(x  -  2)(x  +  2)}\)

= \(\frac{3x^{2}  +  6x  -  5x}{(x  -  2)(x  +  2)}\)

= \(\frac{3x^{2}  +  x}{(x  -  2)(x  +  2)}\)

= \(\frac{x(3x  +  1)}{(x  -  2)(x  +  2)}\)






8th Grade Math Practice

From Simplification of Algebraic Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More