Simple Math Formula on Trigonometry

Simple math formula on trigonometry is given in such an order that students can easily get the formula.


Trigonometry

● Measurement of Trigonometrical Angles:

(i) The angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle is called a radian.

(ii) A radian is a constant angle. 

One radian = (2/π) rt. angle = 57°17’44.8” (approx.) 

(iii) 1 rt. angle = 90° ; 1° = 60’ ; 1‘ = 60”. 

(iv) 1 rt. angle = 100ᵍ ; 1ᵍ = 100’ ; 1‵ = 100‶.

(v) πᶜ 180° = 200ᵍ.

(vi) The circumference of a circle of radius r is 2πr where π is a constant; approximate value of π is ²²/₇; more accurate value of π is 3.14159 (approx.).

(vii) If Θ be the radian measure of an angle subtended at the centre of a circle of radius r by an arc of length s then Θ = ˢ/₀ or, s = rΘ.


● Trigonometrical Ratios of some Standard Angles:

Trigonometrical Ratios of some Standard Angles

● Trigonometrical Ratios for Associated Angles:

Trigonometrical Ratios for Associated Angles

(ii) If Θ is a positive acute angle and n is an even integer then,

(a) sin (n ∙ 90° ± Θ) = sin Θ or, (- sin Θ)

(b) cos (n ∙ 90° ± Θ) = cos Θ or, (- cos Θ)

(c) tan (n ∙ 90° ± Θ) = tan Θ or, (- tan Θ).

(iii) If Θ is a positive acute angle and n is an odd integer then,

(a) sin (n ∙ 90° ± Θ) = cos Θ or, (- cos Θ)

(b) cos (n ∙ 90° ± Θ) = sin Θ or, (- sin Θ)

(c) tan (n ∙ 90° ± Θ) = cot ф or (- cot Θ).



● Compound Angles:

(i) sin (A + B) = sin A cos B + cos A sin B.

(ii) sin ( A - B) = sin A cos B - cos A sin B.

(iii) cos (A + B) = cos A cos B + sin A sin B.

(iv) cos (A - B) = cos A cos B + sin A sin B.

(v) sin (A + B) sin (A - B) = sin² A - sin² B = cos² B - cos² A.

(vi) cos (A + B) cos (A - B) = cos² A - sin² B = cos² B - sin² A.

(vii) tan (A+ B) = (tan A + tan B)/(1 - tan A tan B).

(viii) tan (A - B) = (tan A - tan B)/(1 + tan A tan B).

(ix) cot (A + B) = (cot A cot B - 1)/(cot B + cot A).

(x) cot (A - B) = (cot A cot B + 1)/(cot B - cot A).

(xi) tan (A + B + C) = {(tan A + tan B + tan C) - (tan A tan B tan C)}/(1 - tan A tan B - tan B tan C - tan C tan A).

(xii) 2 sin A cos B = sin (A + B) + sin(A - B).

(xiii) 2 cos A sin B = sin (A + B ) - sin (A - B).

(xiv) 2 cos A cos B = cos (A + B ) + cos (A - B).

(xv) 2 sin A sin B = cos (A - B) - cos (A + B).

(xvi) sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2.

(xvii) sin C - sin D = 2 cos (C + D)/2 sin (C - D)/2.

(xviii) cos C + cos D = 2 cos (C + D)/2 cos (C - D)/2.

(xix) cos C - cos D = 2 sin (C + D)/2 sin (C - D)/2.

● Multiple Angles:

(i) sin 2Θ = 2 sin Θ cos Θ.

(ii) cos 2Θ = cos² Θ - sin² Θ.

(iii) cos 2 Θ = 2 cos² Θ - 1.

(iv) cos 2Θ = 1 - 2 sin² Θ.

(v) 1 - cos2Θ = 2 cos² Θ.

(vi) 1 - cos2Θ = 2 sin² Θ.

(vii) tan² Θ = (1 - cos 2Θ)/(1 + cos 2Θ).

(viii) sin 2Θ = (2 tan Θ)/(1 + tan² Θ)

(ix) cos 2Θ = (1 - tan² Θ)/(1 + tan² Θ).

(x) tan 2Θ = (2 tan Θ)/(1 - tan² Θ).

(xi) sin 3Θ = 3 sin Θ - 4 sin³ Θ.

(xii) cos 3ф = 4 cos³ Θ - 3 cos Θ.

(xiii) tan 3Θ = (3 tan Θ - tan³ Θ)/(1 - 3 tan² Θ).

● Submultiple Angles:

(i) sin Θ = 2 sin (Θ/2) cos (Θ/2).

(ii) cos Θ = cos² (Θ/2) - sin² (Θ/2).

(iii) cos Θ = 2 cos² (Θ/2) - 1.

(iv) cos ф = 1 - 2 sin² (Θ/2).

(v) 1 + cos Θ = 2 cos² (Θ/2).

(vi) 1 - cos Θ = 2 sin² (Θ/2).

(vii) tan² (Θ/2) = (1 - cos Θ)/(1 + cos Θ).

(viii) sin Θ = [2 tan (Θ/2)]/[1 + tan² (Θ/2)].

(ix) cos Θ = [1 - tan² (Θ/2)]/[1 + tan² (Θ/2)].

(x) tan Θ = [2 tan (Θ/2)]/[1 - tan² (Θ/2)].

(xi) sin Θ = 3 sin (Θ/3) - 4 sin³ (Θ/3).

(xii) cos Θ = 4 cos³ (Θ/3) - 3 cos (Θ/2).

(xiii) (a) sin 15° = cos 75° = (√3 - 1)/(2√2).

(b) cos 15° = sin 75° = (√3 + 1)/(2√2).

(c) tan 15° = 2 - √3.

(d) sin 22 ½° = √(2 - √2).

(e) cos 22 ½° = ½ [√(2 + √2)].

(f) tan 22 ½° = √2 - 1.

(g) sin 18 ° = (√5 - 1)/4 = cos 72°.

(h) cos 36° = cos 72° = (√5 + 1)/4.

(i) cos 18° = sin 72° = ¼ [√(10 + 2√5)].

(j) sin 36° = cos 54° = ¼ [√(10 - 2√5)].



● General Solutions:

(i) (a) If sin Θ = 0 then, Θ = nπ.

(b) If sin Θ = 1 then, Θ = (4n + 1)(π/2).

(c) If sin ф = -1 then, Θ = (4n - 1)(π/2).

(d) If sin Θ = sin α then, Θ = nπ + (-1)ⁿ α.

(ii) (a) If cos Θ = 0 then, Θ = (2n + 1)(π/2).

(b) If cos Θ = 1 then, Θ = 2nπ.

(c) If cos Θ = -1 then, Θ = (2n + 1)π.

(d) If cos Θ = cos α then, Θ = 2nπ ± α.

(ii) (a) If tan Θ = 0 then, Θ = nπ.

(b) If tan Θ = tan α then, Θ = 2nπ + α where, n = 0 or any integer.



● Inverse Circular Functions:

(i) sin (sin-1 x) = x ; cos (cos-1 x) = x ; tan (tan-1 x) = x.

(ii) sin-1 (sin Θ) = Θ ; cos-1 (cos Θ) = Θ ; tan-1 (tan Θ) = Θ.

(iii) sin-1 x = cosec-1 (1/x) = cos-1 [√(1 - x2)] = sec-1 [1/√(1 - x2)]

= tan-1 [x/√(1 - x2)] = cot-1 [√(1 - x2)/x].

(iv) sin-1 x + cos-1 x = π/2 ; sec-1 x + cosec-1 x = π/2 ;

tan-1 x + cot-1 x = π/2.

(v) (a) tan-1 x + tan-1 y = tan-1 [(x + y)/(1 - xy)]

(b) tan-1 x - tan-1 y = tan-1 [(x - y)/(1 + xy)]

(vi) (a) sin-1 x + sin-1 y = sin-1 {x√(1 - y2) + y√(1 - x2)}

(b) sin-1 x - sin-1 y = sin-1 {x√(1 - y2 ) - y√(1 - x2)}

(vii) (a) cos-1 x + cos-1 y = cos-1 {xy - √(1 - x2) (1 - y2)}

(b) cos-1 x - cos-1 y = cos-1 {xy + √(1 - x2) (1 - y2)}.

(viii) 2 tan-1 x = sin-1 [2x/(1 + x2)] = cos-1 [(1 - x2)/(1 - x2)]

= tan-1 [2x/(1 - x2)].

(ix) tan-1 x + tan-1 y + tan-1 z = tan-1 [(x + y + z - xyz)/(1 - xy - yz - zx)]

(x) sin-1 x and cos-1 x are defined when -1 ≤ x ≤ 1 ; sec-1 x and cosec-1 x are defined when Ι x Ι ≥ 1 ; tan-1 x and cot-1 x are defined
when - ∞ < x < ∞.

(xi) If principal values of sin-1 x, cos-1 x and tan-1 x be α, β and γ respectively, then -π/2 ≤ α ≤ π/2, 0 ≤ β ≤ π and -π/2 ≤ γ ≤ π/2.

● Properties of Triangle:

(i) a/(sin A) = b/(sin B) = c/(sin C) = 2R.

(ii) a = b cos C + c cos B ; b = c cos A + a cos C ; c = a cos B + b cos A.

(iii) cos A = (b² + c² - a²)/2bc ; cos B = (c² + a² - b²)/2ca ;

cos C = (a² + b² - c²)/2ab

(iv) tan A = [(abc)/R] ∙[ 1/(b² + c² - a²)]

tan B = [(abc)/R] ∙ [1/(c² + a² - b²)]

tan C = [(abc)/R] ∙ [1/(a² + b² - c²)].

(v) sin (A/2) = √[(s - b) (s - c)/(bc)].

sin B/2 = √[(s - c) (s - a)/(ca)].

sin C/2 = √[(s - a) (s - b)/(ab)].

cos A/2 = √[s (s - a)/(bc)].

sin B/2 = √[s (s - b)/(ca)].

cos C/2 = √[s (s - c)/(ab)].

tan A/2 = √[(s - b) (s - c)/{s(s - c)}].

tan B/2 = √[(s - c) (s - a)/{s(s - b)}].

tan C/2 = √[(s - a) (s - b)/{s(s - c)}].

(vi) tan [(B - C)/2] = [(b - c)/(b + c)] cot (A/2).

tan [(C - A)/2] = [(c - a)/(c + a)] cot (B/2).

tan [(A - B)/2] = [(a - b)/(a + b)] cot (C/2).

(vii) ∆ = ½ [bc sin A] = ½ [ca sin B] = ½ [ab sin C].

(viii) ∆ = √{s(s - a)(s - b)(s - c)}.

(ix) R = ᵃᵇᶜ/₄₀.

(x) tan (A/2) = {(s - b)(s - c)}/∆.

tan (B/2) = {(s - c)(s - a)}/∆.

tan (C/2) = {(s - a)(s - b)}/∆

(xi) cot A/2 = {s(s - a)}/∆.

cot (B/2) = {s(s - b)}/∆.

cot (C/2) = {s(s - c)}/∆.

(xii) sin A = 2∆/bc ; sin B = 2∆/ca ; sin C = 2∆/ab

(xiii) r = ∆/s.

(xiv) r = 4R sin (A/2) sin (B/2) sin (C/2).

(xv) r = (s - a) tan (A/2) = (s - b) tan (B/2) = (s - c) tan (C/2).

(xvi) r₁ = ∆/(s - a) ; r₂ = ∆/(s - b); r₃ = ∆/(s - c) .

(xvii) r₁ = 4 R sin (A/2) cos (B/2) cos (C/2).

(xviii) r₂ = 4R sin (B/2) cos (C/2) cos (A/2).

(xix) r₃ = 4 R sin (C/2) cos (A/2) cos (B/2).

(xx) r₁ = s tan (A/2) ; r₂ = s tan (B/2) ; r₃ = s tan (C/2).

Formula




11 and 12 Grade Math

From Simple Math Formula on Trigonometry to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More