Similar Triangles

We will discuss here about the similar triangles.

If two triangles are similar then their corresponding angles are equal and corresponding sides are proportional.

Here, the two triangles XYZ and PQR are similar.

Similar Triangles

So, ∠X = ∠P, ∠Y = ∠Q, ∠Z = ∠R and \(\frac{XY}{PQ}\) = \(\frac{YZ}{QR}\) = \(\frac{XZ}{PR}\).

∆XYZ is similar to ∆PQR.  We write ∆XYZ ∼ ∆PQR (the symbol ‘∼’ means ‘similar to‘.)

Corrosponding Sides:

Sides opposite to equal angles in similar triangles are known as corresponding sides and they are proportional.

Here from the given figures ∠X = ∠P, ∠Y = ∠Q and ∠Z = ∠R.

Corrosponding Sides of Similar Triangles

Therefore, XY and PQ are corresponding sides as they are opposite to ∠Z and ∠R respectively.

Similarly from the given figure, YZ and QR are a pair of corresponding sides. XZ and PR are also a pair of corresponding sides.

Thus, \(\frac{XY}{PQ}\) = \(\frac{YZ}{QR}\) = \(\frac{XZ}{PR}\), as corresponding sides of similar triangles are proportional.

 

Corrosponding Angles:

Angles opposite to proportional sides in similar triangles are known as corresponding angles.

Corrosponding Angles of Similar Triangles

If ∆XYZ ∼ ∆PQR and \(\frac{XY}{PQ}\) = \(\frac{YZ}{QR}\) = \(\frac{XZ}{PR}\) then ∠X = ∠P as they are opposite to corresponding sides YZ and QR respectively.

Similarly from the given figure, ∠Y = ∠Q and ∠Z = ∠R.

 

Congruency and Similarity of Triangles:

Congruency is a particular case of similarity. In both the cases, three angles of one triangle are equal to the three corresponding angles of the other triangle. But in similar triangles the corresponding sides are proportional, while in congruent triangles the corresponding sides are equal.

Congruency and Similarity of Triangles

∆XYZ ∼ ∆TUV.

Therefore, \(\frac{XY}{TU}\) = \(\frac{YZ}{UV}\) = \(\frac{XZ}{TV}\) = k, where k is the constant of proportionality or the scale factor of size transformation.

∆XYZ ≅ ∆PQR.

Here, \(\frac{XY}{PQ}\) = \(\frac{YZ}{QR}\) = \(\frac{XZ}{PR}\) = 1.

Therefore, in congruent triangles the constant of proportionality between the corresponding sides is equal to one. Thus, congruent triangles have the same shape and size while similar triangles have the same shape but not necessarily the same size.

Congruent triangles are always similar, but similar triangles are not necessarily congruent.

Note: Triangles that are similar to the same triangle are similar to each other.

Similar Triangles Image

Here, ∆XYZ ∼ ∆PQR and ∆ABC ∼ ∆PQR.

Therefore, ∆XYZ ∼ ∆ABC.





9th Grade Math

From Similar Triangles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More