Rules to Add Integers

The rules to add integers are as follows:

Rule I:

When the two integers have the positive sign, add the integers and assign the (+) sign to the sum.


1. Combination One:

(positive + positive) or (+ plus +)


For example:

Find the sum of the integers.

(i) 8 + 19 = 27

(ii) 33 + 25 = 58

(iii) 42 + 91 = 133

(iv) 59 + 87 = 146


Note:

Here, we have two integers having the same (+) sign. So, we add the numbers and attach (+) sign to the sum.


Rule II:

When the two integers have the negative sign, add the integers and assign the (-) sign to the sum.


2. Combination Two:

(negative + negative) or (- plus -)


For example:

Find the sum of the integers.

(i) (-7) + (-9) = -16

(ii) (-23) + (-15) = -38

(iii) (-41) + (-57) = -98

(iv) (-119) + (-137) = -256


Note:

Here, both the integers have the same (-) sign. So, we add the numbers and attach the (-) sign to the sum.


Combination of Rule I and Rule II:

From the above two rules (Rule I and Rule II) we can conclude that,

To add two integers of like signs (both positive or both negative), add their values regardless of their signs and give the sum their common sign.

For example:

(i) 23 + 46 = 69

(ii) (-12) + (-21) = -33


Rule III:

When the two integers have opposite sign [one positive (+) and other negative (-)], find the difference of the numbers and to the difference assign the sign of the integer having greater value.


3. Combination Three:

(negative + positive) or (- plus +)


For example:

Find the sum of the integers.

(i) (-17) + 29

= -17 + 29

[Here, two integers are with unlike signs – and +.We find the difference of the numbers is 12 and to the difference attach the sign of the integer having greater value; so the answer is positive 12].

= 12

(ii) (-81) + (+35)

= -81 + 35

[Here, two integers are with unlike signs – and +.We find the difference of the numbers is 46 and to the difference attach the sign of the integer having greater value; so the answer is negative 46].

= -46


4. Combination Four:

(positive + negative) or (+ plus -)


For example:

Find the sum of the integers.

(i) (+79) + (-57)

= 79 – 57

[Here, two integers are with unlike signs + and -.We find the difference of the numbers is 22 and to the difference attach the sign of the integer having greater value; so the answer is positive 22].

= 22



(ii) (+85) + (-121)

= 85 – 121

[Here, two integers are with unlike signs + and -.We find the difference of the numbers is 36 and to the difference attach the sign of the integer having greater value; so the answer is negative 36].

= -36


Rue III in other words,

To add two integers of unlike signs (one positive and the other negatives, find the difference between their numerical values regardless of their signs and give the sign of the greater integer to this difference.

For example: (i) -48 + 26 = -22;

                     (ii) 72 + (-16) = 56



In adding integers these are the possible rules to add integers.


Solved Examples on Rules For Addition of Integers:

1. Add the integers (i) + 45 and + 88;     (ii) -124 and -63

Solution:

According to the rule for addition of integers, to add two integers of like signs, their numerical values are added regardless of their signs and the sum is given their common sign. Therefore, we have

(i) + 45 and + 88 = (+ 45) + (+ 88) = + (45 + 88) = +133 = 133

(ii) -124 and -63 =  (-124) + (-63) = - (124 + 63)= - 187


2.  Add (i) -69 + 45;     (ii) 246 + (- 87)

Solution:

According to the rule for addition of integers, to add two integers of unlike signs, the difference between their numerical values is found and the sign of the integer with greater value is given to this difference.

Therefore, we have

(i) -69 + 45 = -(69 - 45) = -24  

(ii) 246 + (- 87) = +(246 - 87) = +159 = 159

● Integers

Representation of Integers on a Number Line.

Addition of Integers on a Number Line.

Rules to Add Integers.

Rules to Subtract Integers.


You might like these




5th Grade Numbers Page

5th Grade Math Problems

From Rules to Add Integers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition of Capacity | Word Problems on Adding capacity

    Nov 17, 24 10:30 AM

    Practice the third grade math worksheet on addition of capacity. This sheet provides different types of questions where you need to arrange the values of capacity under different columns of litres and

    Read More

  2. Measuring Capacity | Standard Unit of Capacity | Litre | Millilitres

    Nov 17, 24 09:36 AM

    2 Tablespoonful of Water
    We will discuss about measuring capacity. The milkman measures milk in liters. Petrol is given in liters. Mobil oil is sold in liters. Two milk bottles contain 1 liter of milk. One milk bottle

    Read More

  3. Addition of Capacity | Add the Different Units of Capacity | Examples

    Nov 17, 24 09:24 AM

    Addition of Measurement of Capacity
    In addition of capacity we will learn how to add the different units of capacity and volume together. While adding we need to follow that the units of capacity i.e., liter and milliliter

    Read More

  4. Subtraction of Mass | Difference Between the Units of Mass | Examples

    Nov 14, 24 09:16 AM

    Subtraction of Measurement of Weight
    In subtraction of mass we will learn how to find the difference between the units of mass or weight. While subtracting we need to follow that the units of mass i.e., kilogram and gram

    Read More

  5. Worksheet on Subtraction of Mass |Word Problems on Subtraction of Mass

    Nov 13, 24 02:00 PM

    Worksheet on Subtraction of Mass
    Practice the third grade math worksheet on subtraction of mass or weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More