Relation in Math

The concept of relation in math refers to an association of two objects or two variables based some property possessed by them.

For Example:

1. Rachel is the daughter of Noah. 

This statement shows the relation between two persons. 

The relation (R) being ‘is daughter of’. 


2. 5 is less than 9. 

This statement shows the relation between two numbers. 

The relation (R) being ‘is less than’. 

If A and B are two non-empty sets, then the relation R from A to B is a subset of A x B, i.e., R ⊆ A x B. 

If (a, b) ∈ R, then we write a R b and is read as 'a' related to 'b'. 



3. Let A and B denote the set animals and their young ones. 

Clearly, A = {cat, dog, cow, goat}

B = {kitten, puppy, calf, kid}

The relation (R) being ‘is young one of ‘.

Then the fact that,

Kitten is the young one of a cat.

Thus, kitten is related to cat.

Puppy is the young one of a dog.

Thus, puppy is related to dog.


Calf is the young one of a cow.

Thus, calf is related to cow.


Kid is the young one of a goat.

Thus, kid is related to goat.


This fact can also be written as set R or ordered pairs.

R = {(kitten, cat), (puppy, dog), (calf, cow), (kid, goat)}

Clearly, R ⊆ B × A

Thus, if A and B are two non-empty sets, then the relation R from A to B is a subset of A×B, i.e., R ⊆ A × B.

If (a, b) ∈ R, then we write a R b and is read as a is related to b.


Representation of Relation in Math:

The relation in math from set A to set B is expressed in different forms. 

      (i) Roster form 

      (ii) Set builder form 

      (iii) Arrow diagram 





i. Roster form: 

● In this, the relation (R) from set A to B is represented as a set of ordered pairs.

● In each ordered pair 1st component is from A; 2nd component is from B.

● Keep in mind the relation we are dealing with. (>, < etc.)

For Example:

1. If A = {p, q, r} B = {3, 4, 5}

then R = {(p, 3), (q, 4), (r, 5)}

Hence, R ⊆ A × B


2. Given A = {3, 4, 7, 10} B = {5, 2, 8, 1} then the relation R from A to B is defined as ‘is less than’ and can be represented in the roster form as R = {(3, 5) (3, 8) (4, 5), (4, 8), (7, 8)}

Here, 1ˢᵗ component < 2ⁿᵈ component.

In roster form, the relation is represented by the set of all ordered pairs belonging to R.

If A = {-1, 1, 2} and B = {1, 4, 9, 10}

if a R b means a² = b

then, R (in roster form) = {(-1, 1), (1, 1), (2, 4)



ii. Set builder form:

In this form, the relation R from set A to set B is represented as R = {(a, b): a ∈ A, b ∈ B, a...b}, the blank space is replaced by the rule which associates a and b.

For Example:

Let A = {2, 4, 5, 6, 8} and B = {4, 6, 8, 9}

Let R = {(2, 4), (4, 6), (6, 8), (8, 10) then R in the set builder form, it can be written as

R = {a, b} : a ∈ A, b ∈ B, a is 2 less than b}


iii. Arrow diagram:

● Draw two circles representing Set A and Set B.

● Write their elements in the corresponding sets, i.e., elements of Set A in circle A and elements of Set B in circle B.

● Draw arrows from A to B which satisfy the relation and indicate the ordered pairs.

Arrow diagram

For Example:



1. If A = {3, 4, 5} B = {2, 4, 6, 9, 15, 16, 25}, then relation R from A to B is defined as ‘is a positive square root of’ and can be represented by the arrow diagram as shown.
Here R = {(3, 9); (4, 16); (5, 25)}





In this form, the relation R from set A to set B is represented by drawing arrows from 1ˢᵗ component to 2ⁿᵈ components of all ordered pairs which belong to R.

Representation of Relation in Math






2. If A = {2, 3, 4, 5} and B = {1, 3, 5} and R be the relation 'is less than' from A to B,
then R = {(2, 3), (2, 5), (3, 5), (4, 5)}







 Relations and Mapping

Ordered Pair

Cartesian Product of Two Sets

Relation

Domain and Range of a Relation

Functions or Mapping

Domain Co-domain and Range of Function


 Relations and Mapping - Worksheets

Worksheet on Math Relation

Worksheet on Functions or Mapping









7th Grade Math Problems

8th Grade Math Practice

From Relation in Math to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More

  2. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  3. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  4. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  5. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More