Relation between Roots and Coefficients of a Quadratic Equation

We will learn how to find the relation between roots and coefficients of a quadratic equation.

Let us take the quadratic equation of the general form ax^2 + bx + c = 0 where a (≠ 0) is the coefficient of x^2, b the coefficient of x and c, the constant term.

Let α and β be the roots of the equation ax^2 + bx + c = 0

Now we are going to find the relations of α and β with a, b and c.

Now ax^2 + bx + c = 0

Multiplication both sides by 4a (a ≠ 0) we get

4a^2x^2 + 4abx + 4ac = 0

(2ax)^2 + 2 * 2ax * b + b^2 – b^2 + 4ac = 0

(2ax + b)^2 = b^2 - 4ac

2ax + b = ± \(\sqrt{b^{2} - 4ac}\)

x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

Therefore, the roots of (i) are \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

Let α = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) and β = \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

Therefore,

α + β = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) + \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

α + β = \(\frac{-2b}{2a}\)

α + β = -\(\frac{b}{a}\)

α + β = -\(\frac{coefficient of x}{coefficient of x^{2}}\)

Again, αβ = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) × \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

αβ = \(\frac{(-b)^{2} - (\sqrt{b^{2} - 4ac)}^{2}}{4a^{2}}\)

αβ = \(\frac{b^{2} - (b^{2} - 4ac)}{4a^{2}}\)

αβ = \(\frac{4ac}{4a^{2}}\)

αβ = \(\frac{c}{a}\)

αβ = \(\frac{constant term}{coefficient of x^{2}}\)


Therefore, α + β = -\(\frac{coefficient of x}{coefficient of x^{2}}\) and αβ = \(\frac{constant term}{coefficient of x^{2}}\) represent the required relations between roots (i.e., α and β) and coefficients (i.e., a, b and c) of equation ax^2 + bx + c = 0.

 For example, if the roots of the equation 7x^2 - 4x - 8 = 0 be α and β, then

Sum of the roots = α + β = -\(\frac{coefficient of x}{coefficient of x^{2}}\) = -\(\frac{-4}{7}\) = \(\frac{4}{7}\).

and

the product of the roots = αβ = \(\frac{constant term}{coefficient of x^{2}}\) = \(\frac{-8}{7}\) = -\(\frac{8}{7}\).

Solved examples to find the relation between roots and coefficients of a quadratic equation:

Without solving the equation 5x^2 - 3x + 10 = 0, find the sum and the product of the roots.

Solution:

Let α and β be the roots of the given equation.

Then,

α + β = -\(\frac{-3}{5}\) = \(\frac{3}{5}\) and

αβ = \(\frac{10}{5}\) = 2

 

To find the conditions when roots are connected by given relations

Sometimes the relation between roots of a quadratic equation is given and we are asked to find the condition i.e., relation between the coefficients a, b and c of quadratic equation. This is easily done using the formula α + β = -\(\frac{b}{a}\) and αβ = \(\frac{c}{a}\). This will clear when you go through illustrative examples.


1. If α and β are the roots of the equation x^2 - 4x + 2 = 0, find the value of

(i) α^2 + β^2

(ii) α^2 - β^2

(iii) α^3 + β^3

(iv \(\frac{1}{α}\) + \(\frac{1}{ β }\)

Solution:

The given equation is x^2 - 4x + 2 = 0 ...................... (i)

According to the problem, α and β are the roots of the equation (i)

Therefore,

α + β = -\(\frac{b}{a}\) = -\(\frac{-4}{1}\) = 4

and αβ = \(\frac{c}{a}\) = \(\frac{2}{1}\) = 2

(i) Now α^2 + β^2 = (α + β)^2 - 2αβ = (4)^2 – 2 * 2 = 16 – 4 = 12.

(ii) α^2 - β^2 = (α + β)( α - β)

Now (α - β)^2 = (α + β)^2 - 4αβ = (4)^2 – 4 * 2 = 16 – 8 = 8

⇒ α - β = ± √8

⇒ α - β = ± 2√2

Therefore, α^2 - β^2 = (α + β)( α - β) = 4 * (± 2√2) = ± 8√2.

(iii) α^3 + β^3 = (α + β)^3 - 3αβ(α + β) = (4)^3 – 3 * 2 * 4 = 64 – 24 = 40.

(iv) \(\frac{1}{α}\) + \(\frac{1}{ β }\) = \(\frac{ α + β }{α β }\) = \(\frac{4}{2}\) = 2.




11 and 12 Grade Math 

From Relation between Roots and Coefficients of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More