Processing math: 100%

Relation between Cartesian and Polar Co-Ordinates

Here we will learn to find the relation between Cartesian and Polar Co-Ordinates.

Let XOX’ and YOY’ be a set of rectangular Cartesian axes of polar Co-ordinates through the origin O. now, consider a polar Co-ordinates system whose pole and initial line coincide respectively with the origin O and the positive x-axis of the Cartesian system. Let P be any point on the plane whose Cartesian and polar Co-ordinates are (x, y) and (r, θ) respectively. Draw PM perpendicular to OX. Then we have,

polar co-ordinates



OM = x, PM = y, OP = r and < MOP = θ

Now, from the right-angled triangle MOP we get,

x/r = cos θ     or, x = r cos θ     …… (1)

                and

y/r = sin θ     or, y = r sin     …… (2)

Using (1) and (2) we can find Cartesian Co-ordinates (x, y) of the point whose polar Co-ordinates (r, θ) are given.

Again, from the right angled triangle OPM we get,

r² = x² + y²

or, r = √(x² + y²) …… (3)

and tan θ = y/x or, θ = tan1 y/x ……… (4) 


Using (3) and (4) we can find the polar Co-ordinates (r, θ) of the points whose Cartesian Co-ordinates (x, y) are given.


Note:

If the Cartesian Co-ordinates (x, y) of a point are given then to find the value of the vectorial angle θ by the transformation equation θ = tan1 y/x we should note the quadrant in which the point (x, y) lies.


Examples on the relation between Cartesian and Polar Co-Ordinates.

1. The cartesian co-ordinates of a point are (- 1, -√3); find its polar co-ordinates. 

Solution: 

If the pole and initial line of the polar system coincide with the origin and positive x-axis respectively of the cartesian system and the cartesian and polar co-ordinates of a point are ( x, y ) and ( r, θ ) respectively, then 

    x = r cos θ and y= r sin θ. 

In the given problem, x = -1 and y = -√3

Therefore, r cos θ = -1 and r sin θ = -√3 

Therefore, r² Cos² θ + r² sin² = (- 1)² + (-√3)²

And tan θ = (r sin θ)/(r cos θ) = (-√3)/(-1) = √3 = tan π/3

Or, tan θ =tan(π+ π/3) [Since, the point (- 1, - √3) lise in the third quadrant] 

Or, tan θ = tan 4π/3 

Therefore, θ = 4π/3 

Therefore, the polar co-ordinates of the point (- 1, - √3) are (2, 4π/3). 

2. Find the cartesian co-ordinates of the point whose polar co-ordinates are (3, - π/3). 


Solution:

Let (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (3, - π/3). Then,

x= r cos θ = 3 cos (- π/3) = 3 cos π/3 = 3 ∙ 1/2 = 3/2

and y = r sin θ = 3 sin (- π/3) = 3 sin π/3 = -(3√3)/2.

Therefore, the required cartesian co-ordinates of the point (3, -π/3) are (3/2, -(3√3)/2)



3. Transfer, the cartesian form of equation of the curve x² - y² = 2ax to its polar form. 


Solution:

Let OX and OY be the rectangular cartesian axes and the pole and the initial line of the polar system coincide with O and OX respectively. If (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (r, θ), then we have,

x = r cos θ and y = r sin θ.

Now, x² - y² = 2ax

or, r² cos² θ - r² sin² θ = 2a.r cos θ

or, r² (cos² θ - sin² θ) = 2ar cos θ

or, r cos 2 θ = 2a cos θ (Since, r ≠0)

which is the required polar form of the given cartesian equation.



4. Transform the polar form of equation r12 = a12

 cos θ/2 to its cartesian form. 


Solution:

Let OX and OY be the rectangular cartesian axes and the pole and the initial line of the polar system coincide with O and OX respectively. If (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (r, θ), then we have,

x = r cos θ and y = r sin θ.

Clearly, x² + y²

= r² cos² θ + r² sin² θ

= r²

Now, r12 = a12 cos θ/2

or, r = a cos² θ/2 (squaring both sides)

or, 2r = a ∙ 2 cos² θ/2

or, 2r = = a(1 + cosθ); [Since, cos² θ/2 = 1 + cosθ]

or, 2r² = a(r + r cosθ) [multiplying by r (since, r ≠0)]

or, 2(x² + y ²) = ar + ax [r² = x² + y² and r cos θ = x]

or, 2x² + 2y² - ax = ar

or, (2x² + 2y² - ax)² = a²r² [Squaring both sides]

or, (2x² + 2y² - ax)² = a² (x² + y²),

which is the required cartesian form of the given polar form of equation.


 Co-ordinate Geometry 




11 and 12 Grade Math 

From Relation between Cartesian and Polar Co-Ordinates to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Highest Common Factor | HCF | GCD|Prime Factorization Method

    Mar 24, 25 03:40 PM

    Find the H.C.F. of 12, 36, 48
    The highest common factor (H.C.F.) of two or more numbers is the highest or greatest common number or divisor which divides each given number exactly. Hence, it is also called Greatest Common Divisor…

    Read More

  2. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 23, 25 02:39 PM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More

  3. Adding 2-Digit Numbers | Add Two Two-Digit Numbers without Carrying

    Mar 23, 25 12:43 PM

    Adding 2-Digit Numbers Using an Abacus
    Here we will learn adding 2-digit numbers without regrouping and start working with easy numbers to get acquainted with the addition of two numbers.

    Read More

  4. Worksheet on 12 Times Table | Printable Multiplication Table | Video

    Mar 23, 25 10:28 AM

    worksheet on multiplication of 12 times table
    Worksheet on 12 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  5. Vertical Subtraction | Examples | Word Problems| Video |Column Method

    Mar 22, 25 05:20 PM

    Vertical Subtraction
    Vertical subtraction of 1-digit number are done by arranging the numbers column wise i.e., one number under the other number. How to subtract 1-digit number vertically?

    Read More