Relation between Arithmetic Means and Geometric Means

We will discuss here about some of the important relation between Arithmetic Means and Geometric Means.

The following properties are:

Property I: The Arithmetic Means of two positive numbers can never be less than their Geometric Mean.

Proof:

Let A and G be the Arithmetic Means and Geometric Means respectively of two positive numbers m and n.

Then, we have A = m + n/2 and G = ±√mn

Since, m and n are positive numbers, hence it is evident that A > G when G = -√mn. Therefore, we are to show A ≥ G when G = √mn.

We have, A - G = m + n/2 - √mn = m + n - 2√mn/2

A - G = ½[(√m - √n)^2] ≥ 0

Therefore, A - G ≥ 0 or, A G.

Hence, the Arithmetic Mean of two positive numbers can never be less than their Geometric Means. (Proved).

 

Property II: If A be the Arithmetic Means and G be the Geometric Means between two positive numbers m and n, then the quadratic equation whose roots are m, n is x^2 - 2Ax + G^2 = 0.

Proof:

Since, A and G be the Arithmetic Means and Geometric Means respectively of two positive numbers m and n then, we have

A = m + n/2 and G = √mn.

The equation having m, n as its roots is

x^2 - x(m + n) + nm = 0

x^2 - 2Ax + G^2 = 0, [Since, A = m + n/2 and G = √nm]

 

Property III: If A be the Arithmetic Means and G be the Geometric Means between two positive numbers, then the numbers are A ± √A^2 - G^2.

Proof:

Since, A and G be the Arithmetic Means and Geometric Means respectively then, the equation having its roots as the given numbers is

x^2 - 2Ax + G^2 = 0

⇒ x = 2A ± √4A^2 - 4G^2/2

⇒ x = A ± √A^2 - G^2

Property IV: If the Arithmetic Mean of two numbers x and y is to their Geometric Mean as p : q, then, x : y = (p + √(p^2 - q^2) : (p - √(p^2 - q^2).

 

Solved examples on the properties of Arithmetic and Geometric Means between two given quantities:

1. The Arithmetic and Geometric Means of two positive numbers are 15 and 9 respectively. Find the numbers.

Solution:

Let the two positive numbers be x and y. Then according to the problem,

x + y/2 = 15

or, x + y = 30 .................. (i)

and √xy = 9

or xy = 81

Now, (x - y)^2 = (x + y)^2 - 4xy = (30)^2 - 4 * 81 = 576 = (24)^2

Therefore, x - y = ± 24 .................. (ii)

Solving (ii) and (iii), we get,

2x = 54 or 2x = 6

x = 27 or x = 3

When x = 27 then y = 30 - x = 30 - 27 = 3

and when x = 27 then y = 30 - x = 30 - 3 = 27

Therefore, the required numbers are 27 and 3.


2. Find two positive numbers whose Arithmetic Means increased by 2 than Geometric Means and their difference is 12.

Solution:

Let the two numbers be m and n. Then,

m - n = 12 ........................ (i)

It is given that AM - GM = 2

⇒ m + n/2 - √mn = 2

⇒ m + n - √mn = 4

⇒ (√m - √n^2 = 4

⇒ √m - √n = ±2 ........................ (ii)

Now, m - n = 12

⇒ (√m + √n)(√m - √n) = 12

⇒ (√m + √n)(±2) = 12 ........................ (iii)

⇒ √m + √n = ± 6, [using (ii)]

Solving (ii) and (iii), we get m = 16, n = 4

Hence, the required numbers are 16 and 4.

 

3. If 34 and 16 are the Arithmetic Means and Geometric Means of two positive numbers respectively. Find the numbers.

Solution:

Let the two numbers be m and n. Then

Arithmetic Mean = 34

⇒ m + n/2 = 34

⇒ m + n = 68

And

Geometric Mean = 16

√mn = 16

⇒ mn = 256 ............................... (i)  

Therefore, (m - n)^2 = (m + n)^2 - 4mn

⇒ (m – n)^2 = (68)^2 - 4 × 256 = 3600

⇒ m - n = 60............................... (ii)  

On solving (i) and (ii), we get m = 64 and n = 4.

Hence, the required numbers are 64 and 4.

 Geometric Progression



11 and 12 Grade Math

From Relation between Arithmetic Means and Geometric Means to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Counting Numbers from 1 to 50 | Match the Number | Missing Numbers

    Apr 04, 25 03:46 PM

    Math Coloring Pages on Counting Number Oredr
    In counting numbers from 1 to 50, recognize the numbers, count and then join the numbers in the correct number order. Here we mainly need eye-hand coordination to draw the picture and maintain the num

    Read More

  2. Counting Eleven to Twenty with Numbers and Words |Numbers from 11 - 20

    Apr 04, 25 03:21 PM

    Counting eleven to twenty with numbers and words are explained below. One ten and one more is eleven. Eleven comes after ten. One ten and two more is twelve. Twelve comes after eleven.

    Read More

  3. 5th Grade BODMAS Rule Worksheet | PEMDAS | Order of operations|Answers

    Apr 03, 25 03:11 PM

    5th Grade BODMAS Rule Worksheet
    In 5th Grade BODMAS Rule Worksheet you will get different types of problems on mathematical expressions involving different operations, mathematical expression with 'brackets' and 'of' and simplifying…

    Read More

  4. Worksheet on Simplification | Simplify Expressions | BODMAS Questions

    Apr 03, 25 02:58 PM

    Worksheet on Simplification
    In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

    Read More

  5. Divisible by 2 Video |Test of Divisibility by 2 Trick| Rules| Examples

    Apr 03, 25 10:25 AM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More