Reciprocal of a Fraction

Here we will learn reciprocal of a fraction. 

Reciprocal of a Number:

Let us learn reciprocal of a number.

Any natural number can be written as \(\frac{number}{1}\)

10 = \(\frac{10}{1}\);       5 = \(\frac{5}{1}\);       23 = \(\frac{23}{1}\);      52 = \(\frac{52}{1}\) and so on.

Reciprocal of \(\frac{10}{1}\) = \(\frac{1}{10}\)

Reciprocal of \(\frac{23}{1}\) = \(\frac{1}{23}\)

Reciprocal of \(\frac{52}{1}\) = \(\frac{1}{52}\)

Reciprocal of \(\frac{16}{1}\) = \(\frac{1}{16}\)

Reciprocal of \(\frac{36}{1}\) = \(\frac{1}{36}\), etc.

Reciprocal of a Fraction:

What is the reciprocal of \(\frac{2}{3}\)?

Reciprocal of a fraction is the fraction inverted.

Therefore, reciprocal of \(\frac{2}{3}\) = \(\frac{3}{2}\)

Reciprocal of \(\frac{5}{6}\) = \(\frac{6}{5}\), etc.


What is \(\frac{1}{4}\) of 4?

We know that \(\frac{1}{4}\) of 4 means \(\frac{1}{4}\) × 4, let us use the rule of repeated addition to find \(\frac{1}{4}\) × 4.

Reciprocal of Fraction

We can say that \(\frac{1}{4}\) is the reciprocal of 4 or 4 is the reciprocal or multiplicative inverse of \(\frac{1}{4}\).

Now, let us consider the multiplication of the following pairs of fractional numbers.

\(\frac{3}{7}\) × \(\frac{7}{3}\);

\(\frac{5}{8}\) × \(\frac{8}{5}\);

\(\frac{2}{9}\) × \(\frac{9}{2}\) 

We observe that

\(\frac{3}{7}\) × \(\frac{7}{3}\) = \(\frac{21}{21}\) = 1;  

\(\frac{5}{8}\) × \(\frac{8}{5}\) = \(\frac{40}{40}\) = 1;   

\(\frac{2}{9}\) × \(\frac{9}{2}\) = \(\frac{18}{18}\) = 1;

Therefore, if the product of two fractions is 1 we call each fraction as the reciprocal of the other. We can get reciprocal of a fraction by interchanging the numerator and the denominator. The reciprocal of 1 is 1 and there is no reciprocal for 0.


Solved Examples on Reciprocal of a Fraction:

1. Find the reciprocal of \(\frac{11}{15}\)       

Solution:

By interchanging the numerator and the denominator we get \(\frac{15}{11}\).

\(\frac{11}{15}\) × \(\frac{15}{11}\) = \(\frac{165}{165}\) = 1;

Hence, \(\frac{15}{11}\) is the reciprocal of \(\frac{11}{15}\).


2. Find the reciprocal of \(\frac{1}{571}\)       

Solution:

By interchanging the numerator and the denominator we get \(\frac{571}{1}\).

\(\frac{1}{571}\) × \(\frac{571}{1}\) = \(\frac{571}{571}\) = 1;

Hence, \(\frac{571}{1}\) i.e., 571 is the reciprocal of \(\frac{1}{571}\).



Reciprocal of a Mixed Fraction:

To find the reciprocal of a mixed fraction first we need to convert the mixed fractional number to improper fraction and then interchange the numerator and the denominator of the improper fraction.

Solved Examples on Reciprocal of a mixed fraction:

1. Find the reciprocal of 2\(\frac{5}{9}\)       

Solution:

2\(\frac{5}{9}\) is a mixed fraction.

Let's convert the mixed fraction to improper fraction.

2\(\frac{5}{9}\)

= \(\frac{9 × 2 + 5}{9}\)

= \(\frac{23}{9}\)

By interchanging the numerator and the denominator we get \(\frac{9}{23}\).

\(\frac{23}{9}\) × \(\frac{9}{23}\) = \(\frac{207}{207}\) = 1;

Hence, \(\frac{9}{23}\) is the reciprocal of \(\frac{23}{9}\) i.e., 2\(\frac{5}{9}\).

Reciprocal of a Fraction


2. Find the reciprocal of 5\(\frac{13}{21}\)       

Solution:

5\(\frac{13}{21}\) is a mixed fraction.

Let's convert the mixed fraction to improper fraction.

5\(\frac{13}{21}\)  

= \(\frac{21 × 5 + 13}{21}\)

= \(\frac{118}{21}\)

By interchanging the numerator and the denominator we get \(\frac{21}{118}\).

\(\frac{118}{21}\) × \(\frac{21}{118}\) = \(\frac{2478}{2478}\) = 1;

Hence, \(\frac{21}{118}\) is the reciprocal of \(\frac{118}{21}\) i.e., 5\(\frac{13}{21}\).






4th Grade Math Activities

From Reciprocal of a Fraction to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Jan 12, 25 02:42 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  2. 3rd Grade Addition Worksheet | 3-Digit Addition | Word Problems | Ans

    Jan 11, 25 01:06 PM

    3rd Grade Addition Games
    In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping…

    Read More

  3. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  4. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 11, 25 02:48 AM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  5. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More