Real number between Two Unequal Real Numbers

We will learn here ‘how to find a real number between two unequal real numbers?’.

If x, y are two real numbers,\(\frac{x + y}{2}\) is a real number lying between x and y.

If x, y are two positive real numbers, \(\sqrt{xy}\) is a real number lying between x and y.

If x, y are two positive real numbers such that x × y is not a perfect square of a rational number, \(\sqrt{xy}\) is an irrational number lying between x and y,

 

Solved examples to find real numbers between two real numbers:

1. Insert two irrational numbers between √2 and √7.

Solution:

Consider the squares of √2 and √7.

\(\left ( \sqrt{2} \right )^{2}\) =2 and \(\left ( \sqrt{7} \right )^{2}\) = 7.

Since the numbers 3 and 5 lie between 2 and 7 i.e., between \(\left ( \sqrt{2} \right )^{2}\) and \(\left ( \sqrt{7} \right )^{2}\), therefore, √3 and √5 lie between √2 and √7.

Hence two irrational numbers between √2 and √7 are √3 and √5.

Note: Since infinitely many irrational numbers between two distinct irrational numbers, √3 and √5 are not only irrational numbers between √2 and √7.


2. Find an irrational number between √2 and 2.

Solution:

A real number between √2 and 2 is \(\frac{\sqrt{2} + 2}{2}\), i.e., 1 + \(\frac{1}{2}\)√2.

But 1 is a rational number and \(\frac{1}{2}\)√2 is an irrational number. As the sum of a rational number and an irrational number is irrational, 1 + \(\frac{1}{2}\)√2 is an irrational number between √2 and 2.


3. Find an irrational number between 3 and 5.

Solution:

3 × 5 = 15, which is not a perfect square.

Therefore, \(\sqrt{15}\) is an irrational number between 3 and 5.


4. Write a rational number between √2 and √3.

Solution:

Take a number between 2 and 3, which is a perfect square of a rational number. Clearly 2.25, i.e., is such a number.

Therefore, 2 < (1.5)\(^{2}\) < 3.

Hence,√2 < 1.5 √3.

Therefore, 1.5 is a rational number between √2 and √3.

Note: 2.56, 2.89 are also perfect squares of rational numbers lying between 2 and 3. So, 1.67 and 1.7 are also rational numbers lying between √2 and √3.

There are many more rational numbers between √2 and √3.


5. Insert three rational numbers 3√2 and 2√3.

Solution:

Here 3√2 = √9 × √2 = \(\sqrt{18}\)  and 2√3 = √4 × √3 = \(\sqrt{12}\).

13, 14, 15, 16 and 17 lies between 12 and 18.

Therefore, \(\sqrt{13}\), \(\sqrt{14}\), \(\sqrt{15}\) and \(\sqrt{17}\) are all the rational numbers between 3√2 and 2√3.






9th Grade Math

From Real number between Two Unequal Real Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More