Quadratic Equation cannot have more than Two Roots

We will discuss here that a quadratic equation cannot have more than two roots.

Proof:

Let us assumed that α, β and γ be three distinct roots of the quadratic equation of the general form ax\(^{2}\) + bx + c = 0, where a, b, c are three real numbers and a ≠ 0. Then, each one of α, β and γ will satisfy the given equation ax\(^{2}\) + bx + c = 0.

Therefore,

aα\(^{2}\) + bα + c = 0 ............... (i)

aβ\(^{2}\) + bβ + c = 0 ............... (ii)

aγ\(^{2}\) + bγ + c = 0 ............... (iii)

Subtracting (ii) from (i), we get

a(α\(^{2}\) - β\(^{2}\)) + b(α - β) = 0

⇒ (α - β)[a(α + β) + b] = 0

⇒ a(α + β) + b = 0, ............... (iv) [Since, α and β are distinct, Therefore, (α - β) ≠ 0]

Similarly, Subtracting (iii) from (ii), we get

a(β\(^{2}\) - γ\(^{2}\)) + b(β - γ) = 0

⇒ (β - γ)[a(β + γ) + b] = 0

⇒ a(β + γ) + b = 0, ............... (v) [Since, β and γ are distinct, Therefore, (β - γ) ≠ 0]

Again subtracting (v) from (iv), we get

a(α - γ) = 0

⇒ either a = 0 or, (α - γ) = 0

But this is not possible, because by the hypothesis a ≠ 0 and α - γ ≠ 0 since α ≠ γ

α and γ are distinct.

Thus, a(α - γ) = 0 cannot be true.

Therefore, our assumption that a quadratic equation has three distinct real roots is wrong.

Hence, every quadratic equation cannot have more than 2 roots.

 

Note: If a condition in the form of a quadratic equation is satisfied by more than two values of the unknown then the condition represents an identity.

Consider the quadratic equation of the general from ax\(^{2}\) + bx + c = 0 (a ≠ 0) ............... (i)


Solved examples to find that a quadratic equation cannot have more than two distinct roots

Solve the quadratic equation 3x\(^{2}\) - 4x - 4 = 0 by using the general expressions for the roots of a quadratic equation.

Solution:

The given equation is 3x\(^{2}\) - 4x - 4 = 0

Comparing the given equation with the general form of the quadratic equation ax^2 + bx + c = 0, we get

a = 3; b = -4 and c = -4

Substituting the values of a, b and c in α = \(\frac{- b - \sqrt{b^{2} - 4ac}}{2a}\) and β = \(\frac{- b + \sqrt{b^{2} - 4ac}}{2a}\) we get

α = \(\frac{- (-4) - \sqrt{(-4)^{2} - 4(3)(-4)}}{2(3)}\) and β = \(\frac{- (-4) + \sqrt{(-4)^{2} - 4(3)(-4)}}{2(3)}\)

⇒ α = \(\frac{4 - \sqrt{16 + 48}}{6}\) and β =\(\frac{4 + \sqrt{16 + 48}}{6}\)

⇒ α = \(\frac{4 - \sqrt{64}}{6}\) and β =\(\frac{4 + \sqrt{64}}{6}\)

⇒ α = \(\frac{4 - 8}{6}\) and β =\(\frac{4 + 8}{6}\)

⇒ α = \(\frac{-4}{6}\) and β =\(\frac{12}{6}\)

⇒ α = -\(\frac{2}{3}\) and β = 2

Therefore, the roots of the given quadratic equation are 2 and -\(\frac{2}{3}\).

Hence, a quadratic equation cannot have more than two distinct roots.



11 and 12 Grade Math 

From Quadratic Equation cannot have more than Two Roots to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:53 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More