Pythagoras’ Theorem

The lengths of the sides of a right-angled triangle have a special relationship between them. This relation is widely used in many branches of mathematics, such as mensuration and trigonometry.

Pythagoras’ Theorem: In a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Given: Let XYZ be a triangle in which ∠YXZ = 90°.

YZ is the hypotenuse.

Pythagoras’ Theorem

To prove: XY2 + XZ2 = YZ2.

Construction: Draw XM ⊥YZ.

Therefore, ∠XMY = ∠XMZ = 90°.


Proof:

            Statement

            Reason

1. In ∆XYM and ∆XYZ,

(i) ∠XMY = ∠YXZ = 90°

(ii) ∠XYM = ∠XYZ

1.

(i) Given and by construction

(ii) Common angle

2. Therefore, ∆XYM ∼ ∆ZYX

2. BY AA criterion of similarity

3. Therefore, \(\frac{XY}{YZ}\) = \(\frac{YM}{XY}\)

3. Corresponding sides of similar triangle are proportional

4. Therefore, XY\(^{2}\) = YZ ∙ YM

4. By cross multiplication in statement 3.

5. In ∆XMZ and ∆XYZ,

(i) ∠XMY = ∠YXZ = 90°

(ii) ∠XZM = ∠XZY

5.

(i) Given and by construction

(ii) Common angle

6. Therefore, ∆XMZ ∼ ∆YXZ.

6. BY AA criterion of similarity

7. Therefore, \(\frac{XZ}{YZ}\) = \(\frac{MZ}{XZ}\)

7. Corresponding sides of similar triangle are proportional

8. Therefore, XZ\(^{2}\) = YZ ∙ MZ

8. By cross multiplication in statement 7.

9. Therefore, XY\(^{2}\) + XZ\(^{2}\) = YZ ∙ YM + YZ ∙ MZ

⟹ XY\(^{2}\) + XZ\(^{2}\) = YZ(YM+ MZ)

⟹ XY\(^{2}\) + XZ\(^{2}\) = YZ ∙ YZ

⟹ XY\(^{2}\) + XZ\(^{2}\) = YZ\(^{2}\)

9. By adding statements 4 and 8


Problems on Pythagoras’ Theorem:

1. In ∆XYZ, ∠Y = 90°. If XY = 3 cm and YZ = 4 cm, find XZ.

Problems on Pythagoras’ Theorem

Solution:

By Pythagoras, theorem,

XZ\(^{2}\) = XY\(^{2}\) + YZ\(^{2}\)

                  = (3\(^{2}\) + 4\(^{2}\)) cm\(^{2}\)

                  = (9 + 16) cm\(^{2}\)

                  = 25 cm\(^{2}\)

Therefore, XZ = \(\sqrt{25 cm^{2}}\)

Therefore, XZ = 5 cm


2. Two poles, 15 feet and 35 feet high, are 15 feet apart. Find distance between the tops of the poles.

Solution:

Application on Pythagoras’ Theorem

Let the first pole XY = 15 ft

The second pole PQ = 35 ft.

The distance between two poles YQ = 15 ft.

Draw XR ⊥ PQ.

Now, we have,

PR = PQ - RQ = PQ - XY = (35 - 15) ft = 20 ft.

Also, XR = YQ = 15 ft.

Therefore, distance between tops of the poles = XP 

= \(\sqrt{XR^{2} + RP^{2}}\)

                                                                   = \(\sqrt{15^{2} + 20^{2}}\) ft

= \(\sqrt{225 + 400}\) ft

= \(\sqrt{625}\) ft

= 25 ft







9th Grade Math

From Pythagoras’ Theorem to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More