Pure and Mixed Surds

We will discuss about the pure and mixed surds.

If x is a positive integer with nth root, then \(\sqrt[n]{x}\) is a surd of nth order when the value of \(\sqrt[n]{x}\) is irrational. In \(\sqrt[n]{x}\) expression n is the order of surd and x is called as radicand.


Definition of Pure Surd:

A surd in which the whole of the rational number is under the radical sign and makes the radicand, is called pure surd.

In other words a surd having no rational factor except unity is called a pure surd or complete surd. 

For example, each of the surds √7, √10, √x, ∛50, ∛x, ∜6, ∜15, ∜x, 17\(^{2/3}\), 59\(^{5/7}\), m\(^{2/13}\) is pure surd. 

If a surd has the whole number under the radical or root sign and the whole rational number makes a radicand, is called as pure surd. Pure surd has no rational factor except unity. For example \(\sqrt[2]{2}\), \(\sqrt[2]{5}\),\(\sqrt[2]{7}\), \(\sqrt[2]{12}\), \(\sqrt[3]{15}\), \(\sqrt[5]{30}\), \(\sqrt[7]{50}\), \(\sqrt[n]{x}\) all are pure surds as these have rational numbers only under radical sign or the whole expression purely belongs to a surd.


Definition of Mixed Surd:

A surd having a rational co-efficient other than unity is called a mixed surd.

In other words if some part of the quantity under the radical sign is taken out of it, then it makes the mixed surd.

For example, each of the surds 2√7, 3√6, a√b, 2√x, 5∛3, x∛y, 5 ∙ 7\(^{2/3}\) are mixed surd.

More examples:

√45 = \(\sqrt{3\cdot 3\cdot 5}\) = 3√5 is a mixed surd.

√32 = \(\sqrt{2\cdot 2\cdot 2\cdot 2\cdot 2}\) = 2 × 2 × √2 = 4√2 is a mixed surd.

\(\sqrt[4]{162}\) = \(\sqrt[4]{ 2\cdot 3\cdot 3\cdot 3\cdot 3}\) = 3\(\sqrt[4]{2}\) is a mixed surd.

But surds can have rational co-efficient other than unity. Like \(2\sqrt{2}\), \(5\sqrt[3]{10}\), \(3\sqrt[4]{12}\), \(a\sqrt[n]{x}\) are surds where with pure surds some rational numbers is there in the form of rational co-efficient which are 2,5,3,a respectively. This type of surds where the rational co-efficients are not unity is called as mixed surds. From pure surds if some numbers can be taken out of radical sign, then it becomes mixed surds. Like \(\sqrt[2]{12}\) is pure surd which can be written as \(4\sqrt[2]{3}\) and this becomes a mixed surd.


Note:

I. A mixed surd can be expressed in the form of a pure surd.

Mixed surds can be expressed in the form of pure surds. Because if we make rational co-efficient under radical sign, it will become a pure surd. For example \(2\sqrt{7}\), \(3\sqrt{11}\), \(5\sqrt[3]{10}\), \(3\sqrt[4]{15}\) these are mixed surds, we will see now how it can be converted into pure surds.

\(2\sqrt{7}\)= \(\sqrt[2]{2^{2}\times 7}\)= \(\sqrt[2]{4\times 7}\)= \(\sqrt[2]{28}\)…..Pure Surd.

\(3\sqrt{11}\)= \(\sqrt[2]{3^{2}\times 11}\)= \(\sqrt[2]{9\times 11}\)= \(\sqrt[2]{99}\)…..Pure Surd.

\(5\sqrt[3]{10}\)= \(\sqrt[3]{5^{3}\times 10}\)= \(\sqrt[3]{125\times 10}\) = \(\sqrt[3]{1250}\)..Pure Surd.

\(3\sqrt[4]{15}\)= \(\sqrt[4]{3^{4}\times 15}\)= \(\sqrt[4]{81\times 15}\) = \(\sqrt[4]{1215}\)…Pure Surd.

More example,

(i) 3√5 = \(\sqrt{3^{2}\cdot 5}\) = \(\sqrt{9 \cdot 5}\) = √45

(ii) 4 ∙ ∛3 = \(\sqrt[3]{4^{3}}\) ∙ ∛3 = \(\sqrt[3]{64}\) ∙ ∛3 = \(\sqrt[3]{64}\cdot 3\) = ∛192

In general, x \(\sqrt[n]{y}\) =  \(\sqrt[n]{x^{n}}\) ∙ \(\sqrt[n]{y}\) = \(\sqrt[n]{x^{n}y}\)

II. Sometimes a given pure surd can be expressed in the form of a mixed surd.

Pure surds may be expressed in the form of mixed surds also, if some value under radical sign can be taken out as rational co-efficient. In the following examples we will see how a pure surd can expressed in the form of mixed surd.

\(\sqrt[2]{12}\)= \(\sqrt[2]{4\times 3}\)= \(\sqrt[2]{2^{2}\times 3}\)= \(2\sqrt[2]{3}\)….Mixed Surd.

\(\sqrt[2]{50}\)= \(\sqrt[2]{25\times 2}\)= \(\sqrt[2]{5^{2}\times 2}\)= \(5\sqrt[2]{2}\)….Mixed Surd.

\(\sqrt[3]{81}\)= \(\sqrt[3]{27\times 3}\)= \(\sqrt[3]{3^{3}\times 3}\)= \(3\sqrt[3]{3}\)….Mixed Surd.

\(\sqrt[4]{1280}\)= \(\sqrt[4]{256\times 5}\)= \(\sqrt[4]{4^{4}\times 5}\)= \(4\sqrt[4]{5}\)….Mixed Surd.

More example,

(i) √375 = \(\sqrt{5^{3}\cdot 3}\) = 5√15;

(ii) ∛81 = \(\sqrt[3]{3^{4}}\) = 3∛3

(iii) ∜64 = \(\sqrt[4]{2^{6}}\) = 2\(\sqrt[4]{2^{2}}\)= 2\(\sqrt[4]{4}\)

But ∛20 can't be expressed in the form of mixed surd.

But when there is no multiplication factor under the radical sign which can be taken out, that surds can’t be converted into mixed surds.

Like \(\sqrt[2]{15}\), \(\sqrt[3]{30}\), \(\sqrt[2]{21}\), \(\sqrt[4]{40}\) are the examples of pure surds which can’t be expressed in the form of mixed surds.

So all mixed surds can be expressed in the form of pure surds but all pure surds can’t be expressed in the form of mixed surds.

In general the way of expressing a mixed surd to a pure surd is given below.

\(a\sqrt[n]{x}\)= \(\sqrt[n]{a^{n}\times x}\).


Solved example on Pure and Mixed Surds:

Express the following surds in the form of pure surds. 

\(3\sqrt{7}\), \(2\sqrt[3]{5}\), \(5\sqrt[4]{10}\)

Solution:

\(3\sqrt{7}\)= \(\sqrt[2]{3^{2}\times 7}\)= \(\sqrt[2]{9\times 7}\)= \(\sqrt[2]{63}\)…..Pure Surd.

\(2\sqrt[3]{5}\)= \(\sqrt[3]{2^{3}\times 5}\)= \(\sqrt[3]{8\times 5}\) = \(\sqrt[3]{40}\)..Pure Surd.

\(5\sqrt[4]{10}\)= \(\sqrt[4]{5^{4}\times 10}\)= \(\sqrt[4]{625\times 10}\) = \(\sqrt[4]{6250}\)…Pure Surd.

 Surds







11 and 12 Grade Math

From Pure and Mixed Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More