We will discuss the list of properties of triangle formulae which will help us to solve different types of problems on triangle.
1. The angles of the triangle ABC are denoted by A, B, C and the corresponding opposite sides by a, b, c.
2. s denotes the semi-perimeter of the triangle ABC, ∆ its area and R the radius of the circle circumscribing the triangle ABC i.e., R is the circum-radius.
3. asinA = bsinB = csinC = 2R.
4. (i) a = b cos C + c cos B;
(ii) b = c cos A + a cos C, and
(iii) c = a cos B + b cos A.
5. (i) b2 = c2 + a2 - 2ca. cos B or, cos B = c2+a2−b22ca
(ii) a2 = b2 + c2 - 2ab. cos A or, cos A = b2+c2−a22bc
(iii) c2 = a2 + b2 - 2ab. cos C or, cos C = a2+b2−c22ab
6. (i) tan A = abcR ∙ 1b2+c2−a2
(ii) tan B = abcR ∙ 1c2+a2−b2 and
(iii) tan C = abcR ∙ 1a2+b2−c2.
7. (i) sin A2 = √(s−b)(s−c)bc;
(ii) sin B2 = √(s−c)(s−a)ca;
(iii) sin C2 = √(s−a)(s−b)ab;
8. (i) cos A2 = √s(s−a)bc;
(ii) cos BB2 = √s(s−b)ca;
(iii) cos C2 = √s(s−c)ab.
9. (i) tan A2 = √(s−b)(s−c)s(s−a);
(ii) tan B2 = √(s−c)(s−a)s(s−b) and
(iii) tan C2 = √(s−a)(s−b)s(s−c)
10. (i) tan (B−C2) = (b−cb+c) cot A2
(ii) tan (C−A2) = (c−ac+a) cot B2
(iii) tan (A−B2) = (a−ba+b) cot C2
10. ∆ = ½ × product of lengths of two sides × sine of their
included angle
⇒ (i) ∆ = ½ bc sin A
(ii) ∆ = ½ ca sin B
(iii) ∆ = ½ ab sin C
11. ∆ = √s(s−a)(s−b)(s−c)
12. R = abc4∆.
13. (i) tan A2 = (s−b)(s−c)∆;
(ii) tan B2 = (s−c)(s−a)∆and
(iii) tan C2 = (s−a)(s−b)∆.
14. (i) cot A2 = s(s−a)∆;
(ii) cot B2 = s(s−b)∆ and
(iii) cot C2 = s(s−c)∆.
15. r = ∆s
16. r = 4R sin A2 sin B2 sin C2
17. r = (s - a) tanA2 = (s - b) tanB2 = (s - c) tanC2
i.e., (i) r = (s - a) tanA2
(ii) r = (s - b) tanB2
(iii) r = (s - c) tanC2
18. (i) r1 = ∆s−a
(ii) r1 = ∆s−b
(iii) r1 = ∆s−c
19. r1 = 4R sin A2 cos B2 cos c2
20. r2 = 4R cos A2 sin B2 cos c2
21. r3 = 4R cos A2 cos B2 sin c2
22. (i) r1 = s tanA2
(ii) r1 = s tanB2
(iii) r1 = s tanC2
11 and 12 Grade Math
From Properties of Triangle Formulae to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Mar 27, 25 01:33 AM
Mar 26, 25 11:08 AM
Mar 25, 25 11:41 PM
Mar 25, 25 10:23 AM
Mar 25, 25 02:39 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.