We will discuss the list of properties of triangle formulae which will help us to solve different types of problems on triangle.
1. The angles of the triangle ABC are denoted by A, B, C and the corresponding opposite sides by a, b, c.
2. s denotes the semi-perimeter of the triangle ABC, ∆ its area and R the radius of the circle circumscribing the triangle ABC i.e., R is the circum-radius.
3. \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\) = 2R.
4. (i) a = b cos C + c cos B;
(ii) b = c cos A + a cos C, and
(iii) c = a cos B + b cos A.
5. (i) b\(^{2}\) = c\(^{2}\) + a\(^{2}\) - 2ca. cos B or, cos B = \(\frac{c^{2} + a^{2} - b^{2}}{2ca}\)
(ii) a\(^{2}\) = b\(^{2}\) + c\(^{2}\) - 2ab. cos A or, cos A = \(\frac{b^{2} + c^{2} - a^{2}}{2bc}\)
(iii) c\(^{2}\) = a\(^{2}\) + b\(^{2}\) - 2ab. cos C or, cos C = \(\frac{a^{2} + b^{2} - c^{2}}{2ab}\)
6. (i) tan A = \(\frac{abc}{R}\) ∙ \(\frac{1}{b^{2} + c^{2} - a^{2}}\)
(ii) tan B = \(\frac{abc}{R}\) ∙ \(\frac{1}{c^{2} + a^{2} - b^{2}}\) and
(iii) tan C = \(\frac{abc}{R}\) ∙ \(\frac{1}{a^{2} + b^{2} - c^{2}}\).
7. (i) sin \(\frac{A}{2}\) = \(\sqrt{\frac{(s - b)(s - c)}{bc}}\);
(ii) sin \(\frac{B}{2}\) = \(\sqrt{\frac{(s - c)(s - a)}{ca}}\);
(iii) sin \(\frac{C}{2}\) = \(\sqrt{\frac{(s - a)(s - b)}{ab}}\);
8. (i) cos \(\frac{A}{2}\) = \(\sqrt{\frac{s(s - a)}{bc}}\);
(ii) cos B\(\frac{B}{2}\) = \(\sqrt{\frac{s(s - b)}{ca}}\);
(iii) cos \(\frac{C}{2}\) = \(\sqrt{\frac{s(s - c)}{ab}}\).
9. (i) tan \(\frac{A}{2}\) = \(\sqrt{\frac{(s - b)(s - c)}{s(s - a)}}\);
(ii) tan \(\frac{B}{2}\) = \(\sqrt{\frac{(s - c)(s - a)}{s(s - b)}}\) and
(iii) tan \(\frac{C}{2}\) = \(\sqrt{\frac{(s - a)(s - b)}{s(s - c)}}\)
10. (i) tan (\(\frac{B - C}{2}\)) = (\(\frac{b - c}{b + c}\)) cot \(\frac{A}{2}\)
(ii) tan (\(\frac{C - A}{2}\)) = (\(\frac{c - a}{c + a}\)) cot \(\frac{B}{2}\)
(iii) tan (\(\frac{A - B}{2}\)) = (\(\frac{a - b}{a + b}\)) cot \(\frac{C}{2}\)
10. ∆ = ½ × product of lengths of two sides × sine of their
included angle
⇒ (i) ∆ = ½ bc sin A
(ii) ∆ = ½ ca sin B
(iii) ∆ = ½ ab sin C
11. ∆ = \(\sqrt{s(s - a)(s - b)(s - c)}\)
12. R = \(\frac{abc}{4∆}\).
13. (i) tan \(\frac{A}{2}\) = \(\frac{(s - b)(s - c)}{∆}\);
(ii) tan \(\frac{B}{2}\) = \(\frac{(s - c)(s - a)}{∆}\)and
(iii) tan \(\frac{C}{2}\) = \(\frac{(s - a)(s - b)}{∆}\).
14. (i) cot \(\frac{A}{2}\) = \(\frac{s(s - a)}{∆}\);
(ii) cot \(\frac{B}{2}\) = \(\frac{s(s - b)}{∆}\) and
(iii) cot \(\frac{C}{2}\) = \(\frac{s(s - c)}{∆}\).
15. r = \(\frac{∆}{s}\)
16. r = 4R sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)
17. r = (s - a) tan\(\frac{A}{2}\) = (s - b) tan\(\frac{B}{2}\) = (s - c) tan\(\frac{C}{2}\)
i.e., (i) r = (s - a) tan\(\frac{A}{2}\)
(ii) r = (s - b) tan\(\frac{B}{2}\)
(iii) r = (s - c) tan\(\frac{C}{2}\)
18. (i) r\(_{1}\) = \(\frac{∆}{s - a}\)
(ii) r\(_{1}\) = \(\frac{∆}{s - b}\)
(iii) r\(_{1}\) = \(\frac{∆}{s - c}\)
19. r\(_{1}\) = 4R sin \(\frac{A}{2}\) cos \(\frac{B}{2}\) cos \(\frac{c}{2}\)
20. r\(_{2}\) = 4R cos \(\frac{A}{2}\) sin \(\frac{B}{2}\) cos \(\frac{c}{2}\)
21. r\(_{3}\) = 4R cos \(\frac{A}{2}\) cos \(\frac{B}{2}\) sin \(\frac{c}{2}\)
22. (i) r\(_{1}\) = s tan\(\frac{A}{2}\)
(ii) r\(_{1}\) = s tan\(\frac{B}{2}\)
(iii) r\(_{1}\) = s tan\(\frac{C}{2}\)
11 and 12 Grade Math
From Properties of Triangle Formulae to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jan 14, 25 11:53 PM
Jan 14, 25 11:02 PM
Jan 14, 25 01:57 PM
Jan 14, 25 12:29 AM
Jan 14, 25 12:21 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.