Properties of Rational Numbers

We will learn some useful properties of rational numbers.


Property 1:

If a/b is a rational number and m is a nonzero integer, then

\(\frac{a}{b}\) = \(\frac{a  ×  m}{b  ×  m}\)

In other words, a rational number remains unchanged, if we multiply its numerator and denominator by the same non-zero integer. 

For examples:

\(\frac{-2}{5}\) = \(\frac{(-2)  ×  2}{5  ×  2}\) = \(\frac{-4}{10}\), \(\frac{(-2)  ×  3}{5  ×  3}\) =  \(\frac{-6}{15}\), \(\frac{(-2)  ×  4}{5  ×  4}\) = \(\frac{-8}{20}\) and so on ……

Therefore, \(\frac{-2}{5}\) = \(\frac{(-2)  ×  2}{5  ×  2}\) = \(\frac{(-2)  ×  3}{5  ×  3}\) = \(\frac{(-2)  ×  4}{5  ×  4}\) and so on ……

Property 2:

If \(\frac{a}{b}\) is a rational number and m is a common divisor of a and b, then

\(\frac{a}{b}\) = \(\frac{a  ÷  m}{a  ÷  m}\)

In other words, if we divide the numerator and denominator of a rational number by a common divisor of both, the rational number remains unchanged.

For examples:

\(\frac{-32}{40}\) = \(\frac{-32  ÷  8}{40  ÷  8}\) = \(\frac{-4}{5}\)

 

Property 3:

Let \(\frac{a}{b}\) and \(\frac{c}{d}\) be two rational numbers.

Then \(\frac{a}{b}\) = \(\frac{c}{d}\) ⇔ \(\frac{a  ×  d}{b  ×  c}\).

Properties of Rational Numbers





a × d = b × c

For examples:

If \(\frac{2}{3}\) and \(\frac{4}{6}\) are the two rational numbers then, \(\frac{2}{3}\) = \(\frac{4}{6}\) ⇔ (2 × 6) = (3 × 4).

Note:

Except zero every rational number is either positive or negative. 

Every pair of rational numbers can be compared.

 

Property 4:

For each rational number m, exactly one of the following is true:

(i) m > 0                (ii) m = 0               (iii) m < 0

For examples:

The rational number \(\frac{2}{3}\) is greater than 0.

The rational number \(\frac{0}{3}\) is equal to 0.

The rational number \(\frac{-2}{3}\) is less than 0.

 

Property 5:

For any two rational numbers a and b, exactly one of the following is true:

(i) a > b                 (ii) a = b                                (iii) a < b

For examples:

If \(\frac{1}{3}\) and \(\frac{1}{5}\) are the two rational numbers then, \(\frac{1}{3}\) is greater than \(\frac{1}{5}\).

If \(\frac{2}{3}\) and \(\frac{6}{9}\) are the two rational numbers then, \(\frac{2}{3}\) is equal to \(\frac{6}{9}\).

If \(\frac{-2}{7}\) and \(\frac{3}{8}\) are the two rational numbers then, \(\frac{-2}{7}\) is less than \(\frac{3}{8}\).

 

Property 6:

If a, b and c be rational numbers such that a > b and b > c, then a > c.

For examples:

If \(\frac{3}{5}\), \(\frac{17}{30}\) and \(\frac{-8}{15}\) are the three rational numbers where \(\frac{3}{5}\) is greater than \(\frac{17}{30}\) and \(\frac{17}{30}\) is greater than \(\frac{-8}{15}\), then \(\frac{3}{5}\) is also greater than \(\frac{-8}{15}\).


So, the above explanations with examples help us to understand the useful properties of rational numbers.

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers






8th Grade Math Practice 

From Properties of Rational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:09 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers