Properties of Angles of a Triangle

We will discuss about some of the properties of angles of a triangle.

1. The three angles of a triangle are together equal to two right angles.

ABC is a triangle.

Then ∠ZXY + ∠XYZ + ∠YZX = 180°

Using this property, let us solve some of the examples.


Solved examples:

(i) In ∆XYZ, ∠X = 55° and ∠Y = 75°. Find ∠Z.

Solution:

∠X + ∠Y + ∠Z = 180°

or, 55° + 75° + ∠Z = 180°

or, 130° + ∠Z = 180°

or, 130° - 130° + ∠Z = 180° - 130°

Therefore, ∠Z = 50°

(ii) In the ∆XYZ, ∠Y = 5∠Z and ∠X= 3∠Z. Find the angles of the triangle.

Solution:

∠X + ∠Y + ∠Z = 180°

or, 3∠Z + 5∠Z + ∠Z = 180°

or, 9∠Z = 180°

or, \(\frac{9∠Z}{9}\) = \(\frac{180°}{9}\)

Therefore, ∠Z = 20°

We know, ∠X= 3∠Z 

Now, plug-in the value of ∠Z

∠X= 3 × 20°

Therefore, ∠X= 60°

Again we know, ∠Y= 5∠Z 

Now, plug-in the value of ∠Z

∠Y= 5 × 20°

Therefore, ∠Y= 100°

Hence, the angles of the triangle are ∠X = 60°, ∠Y = 100° and ∠Z = 20°.


2. If one side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

The side QR of the ∆PQR is produced to S.

Then ∠PRS = ∠RPQ + ∠PQR

Corollary 1: An exterior angle of a triangle is greater than either of the interior opposite angles.

In ∆PQR, QR is produced to S. 

Therefore, ∠PRS > ∠RPQ and ∠PRS ∠PQR

Corollary 2: A triangle can have only one right angle.

Corollary 3: A triangle can have only one obtuse angle.

Corollary 4: A triangle must have at least two acute angles.

Corollary 5: In a right-angled triangle, the acute angles are complementary.

Now, using this property, let us solve some of the following examples.


Solved examples:

(i) Find ∠Q from the given figure.

Solution:

∠P + ∠Q = ∠PRS

Given, ∠P = 50° and ∠PRS = 120° 

or, 50° + ∠Q = 120°

or, 50° - 50° + ∠Q = 120° - 50°

or, ∠Q = 120° - 50°

Therefore, ∠Q = 70°


(ii) From the given figure find all the angles of ∆ABC, given that ∠B = ∠C.

Solution:

Given, ∠B = ∠C

We know, ∠DAC = 150°

∠DAC + ∠CAB = 180°, as they form a linear pair

or, 150° + ∠CAB = 180°

or, 150° - 150° + ∠CAB = 180° - 150°

or, ∠CAB = 30°

Let ∠B = ∠C = x°

Therefore, x° + x° = 150°, as the exterior angle of a triangle is equal to the sum of the interior opposite angles.

or, 2x° = 150°

or, \(\frac{2x°}{2}\) = \(\frac{150°}{2}\)

or, x° = 75°

Therefore, ∠B = ∠C = 75°.






9th Grade Math

From Properties of Angles of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More