Proof of Tangent Formula tan (α - β)

We will learn step-by-step the proof of tangent formula tan (α - β).

Prove that: tan (α - β) = \(\frac{tan  α  -  tan  β}{1  +  tan  α  tan  β}\).

Proof: tan (α - β) = \(\frac{sin  (α  -  β)}{cos  (α  -  β)}\)

= \(\frac{sin  α  cos  β  -   cos  α  sin  β}{cos  α  cos  β  +  sin  α  sin  β}\)

\(\frac{\frac{sin  α  cos  β}{cos  α  cos  β} -  \frac{cos  α  sin  β}{cos  α  cos  β}}{\frac{cos  α  cos  B}{cos  α  cos  β} + \frac{sin  α  sin  β}{cos  α  cos  β}}\), [dividing numerator and denominator by cos α cos β].

= \(\frac{tan  α  -  tan  β}{1  +  tan  α  tan  β}\)          Proved

Therefore, tan (α - β) = \(\frac{tan   α  -  tan   β}{1  +  tan  α   tan   β}\).

Solved examples using the proof of tangent formula tan (α - β):

1. Find the values of tan 15°

Solution:

tan 15° = tan (45° - 30°)

           = \(\frac{tan  45° -  tan  30°}{1 +  tan  45° tan  30° }\)

           = \(\frac{1 - \frac{1}{√3}}{1 + (1 ∙ \frac{1}{√3})}\)

           = \(\frac{√3 - 1}{√3 + 1}\)

           = \(\frac{(√3 - 1)^{2}}{(√3 + 1)(√3 - 1)}\)

           = \(\frac{(√3)^{2} - 2 ∙ √3 + (1)^{2}}{(√3 + 1)(√3 - 1)}\)

           = \(\frac{3 + 1 - 2 ∙ √3}{3 - 1}\)

           = \(\frac{4 - 2√3}{2}\)

           = 2 - √3

 

2. Prove the identities: \(\frac{cos  10° - sin  10°}{cos  10°  + sin  10°}\) = tan 35°      

Solution:

L.H.S = \(\frac{cos  10° -  sin  10°}{cos  10° +  sin  10°}\)

        = \(\frac{1 -  tan  10°}{1 +  tan 10°}\), (dividing numerator and denominator by cos 10°)

        = \(\frac{tan  45° -  tan  10°}{1 +  tan  45° tan  10°}\), (Since we know that, tan 45° = 1)

        = tan (45° - 10°)

        = tan 35°              Proved

 

3. If x - y = π/4, prove that (1 + tan x)(1 + tan y) = 2 tan x

Solution:

Given, x - y = π/4

⇒ tan (x - y) = tan π/4

⇒ \(\frac{tan  x -  tan  y}{1 +  tan  x tan  y}\) = 1, [since tan π/4 = 1]

⇒ 1 + tan x tan y = tan x - tan y

⇒ 1 + tan x tan y + tan y = tan x

⇒ 1 + tan x + tan x tan y + tan y = tan x + tan x, [Adding tan x to both the sides]

⇒ (1 + tan x)(1 + tan y) = 2 tan x              Proved

 

6. If tan β = \(\frac{n  sin  \alpha  cos  \alpha}{1 -  n  sin^{2} \alpha}\), show that tan (α - β) = (1 - n) tan α

Solution:

tan (α - β) = \(\frac{tan  \alpha  -  tan  \beta }{1  +  tan  \alpha  tan  \beta}\)

= \(\frac{\frac{sin  \alpha }{cos  \alpha}  - \frac{n  sin  \alpha cos  \alpha}{1  -  n  sin^{2}  \alpha}}{1  +  \frac{sin  \alpha}{cos  \alpha}\cdot \frac{n  sin  \alpha  cos  \alpha}{1  -  n  sin^{2}  \alpha}}\)

\(\frac{sin  \alpha (1  -   n sin^{2}  \alpha)  -  n sin  \alpha cos^{2}  \alpha}{cos  \alpha (1  -  n sin^{2}  \alpha)  +   n  sin^{2}  \alpha  cos  \alpha}\)

= \(\frac{sin  \alpha}{cos  \alpha} \cdot \frac{1  -  n sin^{2}  \alpha  -  n cos^{2}  \alpha}{1  -  n sin^{2}  \alpha  +  n sin^{2}  \alpha}\)

= \(\frac{sin  \alpha}{cos  \alpha} \cdot \frac{1  -  (n  sin^{2} \alpha  +  cos^{2}  \alpha)}{1 }\)

= tan α ∙ (1 - n ∙ 1), [since, we know that sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

= (1 - n) tan α              Proved

 

 7. If tan β = \(\frac{sin  α cos  α}{2  +  cos^{2}  α}\) prove that 3 tan (α - β) = 2 tan α.

Solution:

We have, tan (α - β) = \(\frac{tan  α  –  tan  β}{1 +  tan  α  tan  β}\)

⇒ tan (α - β) = \(\frac{\frac{sin  α}{cos  α}  -  \frac{sin  α  cos  α}{2  +  cos^{2}  α}}{1  +  \frac{sin  α}{cos  α} ∙ \frac{sin  α  cos  α}{2  +  cos^{2}  α}}\), [since we know that, tan β = \(\frac{sin  α  cos  α}{2  +  cos^{2}  α}\)

⇒ tan (α - β) = \(\frac{2  sin  α  +  sin  α   cos^{2}  α  -  sin  α  cos^{2}  α}{2  cos  α  +  cos^{3}  α  +  sin^{2}  α  cos  α}\)

 ⇒ tan (α - β) = \(\frac{2  sin  α}{cos  α (2  +  cos^{2}  α  +   sin^{2}  α)}\)

⇒ tan (α - β) = \(\frac{2  sin  α}{cos  α (2  +  1) }\), [since we know that cos\(^{2}\) θ + sin\(^{2}\) θ = 1]

⇒ tan (α - β) = \(\frac{2 sin  α}{3 cos  α}\)

⇒ tan (α - β) = 3 tan (α - β)

⇒ tan (α - β) = 2 tan α              Proved

 Compound Angle






11 and 12 Grade Math

From Proof of Tangent Formula tan (α - β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More