Proof of Compound Angle Formula
cos (α - β)

We will learn step-by-step the proof of compound angle formula cos (α - β). Here we will derive formula for trigonometric function of the difference of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of cos (α - β) is generally called subtraction formulae. In the geometrical proof of the subtraction formulae we are assuming that α, β are positive acute angles and α > β. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, cos (α - β) = cos α cos β + sin α sin β; where α and β are positive acute angles and α > β.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Now, the rotating line rotates further in the clockwise direction and starting from the position OY makes out an acute ∠YOZ = β (which is < α).

Thus, ∠XOZ = α - β.    

We are suppose to prove that, cos (α - β) = cos α cos β + sin α sin β.



Construction: On the bounding line of the compound angle (α - β) take a point A on OZ and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and produced BA respectively.

Proof of Compound Angle Formula cos (α - β)


Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠YCE = corresponding ∠XOY = α.

Now, from the right-angled triangle AOB we get,

cos (α - β) = \(\frac{OB}{OA}\)

                = \(\frac{OD   +   DB}{OA}\)

                = \(\frac{OD}{OA}\) + \(\frac{DB}{OA}\)

                = \(\frac{OD}{OA}\) + \(\frac{CE}{OA}\)

                = \(\frac{OD}{OC}\) ∙ \(\frac{OC}{OA}\) + \(\frac{CE}{AC}\) ∙ \(\frac{AC}{OA}\)

                = cos α cos β + sin ∠CAE sin β  

                = cos α cos β + sin α sin β, (since we know, ∠CAE = α)

Therefore, cos (α - β) = cos α cos β + sin α sin β. Proved

 

1. Using the t-ratios of 30° and 45°, find the values of cos 15°.             

Solution:    

   cos 15°

= cos (45° - 30°)

= cos 45° cos 30° - sin 45° sin 30°

= (\(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\)) + (\(\frac{1}{√2}\) ∙ \(\frac{1}{2}\))

= \(\frac{√3 + 1}{2√2}\)


2. Prove the identities: sin 63°32’ sin 33°32’ + sin 26°28’ sin 56°28 = √3/2

Solution:

L. H. S. = Sin 63°32’ Sin 33°32’ + sin 26°28’ sin 56°28’

= sin(90° - 26° 28’) sin (90° - 56° 28’) + sin 26°28’ sin 56°28’ 

= cos 26°28’ cos 56°28’ + sin 26°28’ sin 56°28’

= cos (56°28’ - 26°28’)

= cos 30°

= \(\frac{√3}{2}\).      Proved

 

3. Prove the identities:

1 + tan θ ∙ tan θ/2 = sec θ

Solution:     

L.H.S = 1 + tan θ. tan θ/2

= 1 + \(\frac{sin  θ  ∙  sin  θ/2}{cos  θ  ∙  cos  θ/2}\)

= \(\frac{cos  θ   cos  θ/2  +  sin  θ   sin  θ/2}{cos θ   cos  θ/2 }\)

= \(\frac{cos(θ  -  θ/2)}{cos  θ   cos  θ/2}\)

= \(\frac{cos  θ/2}{cos  θ  ∙  cos  θ/2}\)

= \(\frac{1}{cos  θ }\)

= sec θ.         Proved

 

4. Prove that cos 70° cos 10° + sin 70° sin 10° = ½

Solution:

L.H.S. = cos 70° cos 10° + sin 70° sin 10°

= cos (70° - 10°)

= cos 60

= ½ = R.H.S.     Proved

 

5. Find the maximum and minimum values of 3 cos θ + 4sin θ + 5.

Solution:    

Let, r cos α = 3 …………… (i) and r sin α = 4 …………… (ii)

Now square the equation (i) and (ii) then add

r\(^{2}\) cos\(^{2}\) α + r\(^{2}\) sin\(^{2}\) α = 3\(^{2}\) + 4\(^{2}\)

⇒ r\(^{2}\) (cos\(^{2}\) α + sin\(^{2}\) α) = 25    

⇒ r\(^{2}\) (1) = 25, since cos\(^{2}\) α + sin\(^{2}\) α = 1

⇒ r = 5, [Taking square root on both sides]

Now equation (i) divided by (ii) we get,

\(\frac{r  sin α}{r  cos α}\) = 4/3                

⇒ tan α = 4/3

Therefore, 3 cos θ + 4 sin θ + 5 = r cos α cos θ + r sin α sin θ + 5

                                           = 5 cos (θ - α) + 5

Since, -1 ≤ cos (θ - α) ≤ 1

Therefore, -5 ≤ 5 cos (θ - α) ≤ 5

⇒ -5 + 5 ≤ 5 cos (θ - α) + 5 ≤ 5 + 5

⇒ 0 ≤ 5 cos (θ - α) + 5 ≤ 10

From this inequality it readily follows that the maximum and minimum values of [5 cos (θ - α) + 5] i.e., (3 cos θ + 4 sin θ + 5) are 10 and 0 respectively.


6. Prove that sin (n + 1) x sin (n + 2) x + cos (n + 1) x cos (n + 2) x = cos x

Solution:

L.H.S. = sin (n + 1) x sin (n + 2) x + cos (n + 1) x cos (n + 2) x

         = cos (n + 2) x cos (n + 1) x + sin (n + 2) x sin (n + 1) x

         = cos {(n + 2) x - (n + 1) x)

         = cos x = R.H.S.   Proved

 Compound Angle







11 and 12 Grade Math

From Proof of Compound Angle Formula cos (α - β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:09 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More