We will learn how to solve the problems on submultiple angles formula.
1. If sin x = 3/5 and 0 < x < \(\frac{π}{2}\), find the value of tan \(\frac{x}{2}\)
Solution:
tan \(\frac{x}{2}\)
= \(\sqrt{\frac{1 - cos x}{1 + cos x}}\)
= \(\sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}}\)
= \(\sqrt{\frac{1}{9}}\)
= \(\frac{1}{3}\)
2. Show that, (sin\(^{2}\) 24° - sin\(^{2}\) 6° ) (sin\(^{2}\) 42° - sin\(^{2}\)
12°) = \(\frac{1}{16}\)
Solution:
L.H.S. = 1/4 (2 sin\(^{2}\) 24˚ - 2 sin\(^{2}\) 6˚)(2 sin\(^{2}\) 42˚ - 2 sin\(^{2}\) 12˚)
= ¼ [(1- cos 48°) - (1 - cos 12°)] [(1 - cos 84° ) - (1 - cos 24°)]
= ¼ (cos 12° - cos 48°)(cos 24° -
cos 84°)
= ¼ (2 sin 30° sin 18° ) (2 sin 54° sin 30°)
= ¼ [2 ∙ ½ ∙ sin 18°] [2 ∙ sin(90°
- 36°) × ½]
= ¼ sin 18° ∙ cos 36°
= \(\frac{1}{4}\) ∙ \(\frac{√5 - 1}{4}\) ∙ \(\frac{√5 + 1}{4}\)
= \(\frac{1}{4}\) × \(\frac{4}{16}\)
= \(\frac{1}{16}\) = R.H.S. Proved.
3. If tan x = ¾ and x lies in the third quadrant, find the values of sin \(\frac{x}{2}\), cos \(\frac{x}{2}\) and tan \(\frac{x}{2}\).
Solution:
As x lies in the third quadrant, cos x is negative
sec\(^{2}\) x = 1 + tan\(^{2}\) x = 1 + (3/4)\(^{2}\) = 1 + \(\frac{9}{16}\) = \(\frac{25}{16}\)
⇒ cos\(^{2}\) x = \(\frac{25}{16}\)
⇒ cos x = ± \(\frac{4}{5}\), but cos x is negative
Therefore, cos x = -\(\frac{4}{5}\)
Also π < x < \(\frac{3π}{2}\)
⇒ \(\frac{π}{2}\) < \(\frac{x}{2}\) < \(\frac{3π}{4}\)
⇒ \(\frac{x}{2}\) lies in second quadrant
⇒ cos \(\frac{x}{2}\) is –ve and sin \(\frac{x}{2}\) is +ve.
Therefore, cos \(\frac{x}{2}\) = -\(\sqrt{\frac{1 + cos x}{2}}\) = -\(\sqrt{\frac{1 - \frac{4}{5}}{2}}\) = - \(\frac{1}{√10}\)
sin \(\frac{x}{2}\) = -\(\sqrt{\frac{1 - cos x}{2}}\) = \(\sqrt{\frac{1 - (-\frac{4}{5})}{2}}\) = \(\sqrt{\frac{9}{10}}\) = \(\frac{3}{√10}\)
tan \(\frac{x}{2}\) = \(\frac{sin \frac{x}{2}}{cos \frac{x}{2}}\) = \(\frac{3}{√10}\)(\(\frac{√10}{1}\)) = -3
4. Show that using the formula of submultiple angles tan 6˚ tan 42˚ tan 66˚ tan 78˚ = 1.
Solution:
L.H.S = tan 6˚ tan 42˚ tan 66˚ tan 78˚
= \(\frac{(2 sin 6˚ sin 66˚) (2 sin 42˚ sin 78˚)}{(2 cos 6˚ cos 66˚) ( 2 cos 42˚ cos 78˚)}\)
= \(\frac{( cos 60˚ - cos 72˚)( cos 36˚ - cos 120˚)}{( cos 60˚ + cos 72˚)( cos 36˚ + cos 120˚)}\)
= \(\frac{(\frac{1}{2} - sin 18˚) ( cos 36˚ + \frac{1}{2})}{(\frac{1}{2} + sin 18˚) ( cos 36˚ - \frac{1}{2})}\), [Since, cos 72˚ = cos (90˚ - 18˚) = sin 18˚ and cos 120˚ = cos ( 180˚ - 60˚) = - cos 60˚ = -1/2]
= \(\frac{(\frac{1}{2} - \frac{√5 - 1}{4}) (\frac{√5 + 1}{4} + \frac{1}{2})}{(\frac{1}{2} + \frac{√5 - 1}{4}) (\frac{√5 + 1}{4} - \frac{1}{2})}\), [ putting the values of sin 18˚ and cos 36˚]
= \(\frac{(3 - √5) ( 3 + √5)}{(√5 + 1) (√5 - 1) }\)
= \(\frac{9 - 5}{5 - 1}\)
= \(\frac{4}{4}\)
= 1 = R.H.S. Proved.
5. Without using table prove that, sin 12° sin 48° sin 54˚ = \(\frac{1}{8}\)
Solution:
L. H. S. = sin 12° sin 48° sin 54°
= \(\frac{1}{2}\) (2 sin 12°sin 48°) sin (90°- 36°)
= \(\frac{1}{2}\) [cos 36°- cos 60°] cos 36°
= \(\frac{1}{2}\) [√\(\frac{√5 + 1}{4}\) - \(\frac{1}{2}\)] \(\frac{√5 + 1}{4}\), [Since, cos 36˚ = \(\frac{√5 + 1}{4}\)]
= \(\frac{1}{2}\) ∙ \(\frac{√5 - 1}{4}\) ∙ \(\frac{√5 + 1}{4}\)
= \(\frac{4}{32}\)
= \(\frac{1}{8}\) = R.H.S. Proved.
11 and 12 Grade Math
From Problems on Submultiple Angles to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jan 14, 25 11:53 PM
Jan 14, 25 11:02 PM
Jan 14, 25 01:57 PM
Jan 14, 25 12:29 AM
Jan 14, 25 12:21 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.