Problems on Submultiple Angles

We will learn how to solve the problems on submultiple angles formula.

1. If sin x = 3/5 and 0 < x < \(\frac{π}{2}\), find the value of tan \(\frac{x}{2}\)

Solution:

tan \(\frac{x}{2}\)

= \(\sqrt{\frac{1 - cos x}{1 + cos x}}\)

= \(\sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}}\)

= \(\sqrt{\frac{1}{9}}\)

= \(\frac{1}{3}\)

2. Show that, (sin\(^{2}\) 24° - sin\(^{2}\) 6° ) (sin\(^{2}\) 42° - sin\(^{2}\) 12°) = \(\frac{1}{16}\)

Solution:  

L.H.S. = 1/4 (2 sin\(^{2}\) 24˚ - 2 sin\(^{2}\) 6˚)(2 sin\(^{2}\) 42˚ - 2 sin\(^{2}\) 12˚)

= ¼ [(1- cos 48°) - (1 - cos 12°)] [(1 - cos 84° ) - (1 - cos 24°)]

= ¼ (cos 12° - cos 48°)(cos 24° - cos 84°)

= ¼ (2 sin 30° sin 18° ) (2 sin 54° sin 30°)

= ¼ [2 ∙ ½ ∙ sin 18°] [2 ∙ sin(90° - 36°) × ½]

= ¼ sin 18° ∙ cos 36°

= \(\frac{1}{4}\) ∙ \(\frac{√5 - 1}{4}\) ∙ \(\frac{√5 + 1}{4}\)

= \(\frac{1}{4}\) × \(\frac{4}{16}\)

= \(\frac{1}{16}\) = R.H.S.              Proved.

 

3. If tan x = ¾ and x lies in the third quadrant, find the values of sin \(\frac{x}{2}\), cos \(\frac{x}{2}\)  and tan \(\frac{x}{2}\).

Solution:

As x lies in the third quadrant, cos x is negative

sec\(^{2}\) x = 1 + tan\(^{2}\) x = 1 + (3/4)\(^{2}\) = 1 + \(\frac{9}{16}\) = \(\frac{25}{16}\)

⇒ cos\(^{2}\) x = \(\frac{25}{16}\)

⇒ cos x = ± \(\frac{4}{5}\), but cos x is negative

Therefore, cos x = -\(\frac{4}{5}\)

Also π < x < \(\frac{3π}{2}\)

⇒ \(\frac{π}{2}\) < \(\frac{x}{2}\) < \(\frac{3π}{4}\)

⇒ \(\frac{x}{2}\)  lies in second quadrant

⇒ cos \(\frac{x}{2}\) is –ve and sin \(\frac{x}{2}\) is +ve.

Therefore, cos \(\frac{x}{2}\) = -\(\sqrt{\frac{1 + cos x}{2}}\) = -\(\sqrt{\frac{1 - \frac{4}{5}}{2}}\) = - \(\frac{1}{√10}\)

sin \(\frac{x}{2}\) = -\(\sqrt{\frac{1 - cos x}{2}}\) = \(\sqrt{\frac{1 - (-\frac{4}{5})}{2}}\) = \(\sqrt{\frac{9}{10}}\) =  \(\frac{3}{√10}\)

tan \(\frac{x}{2}\) = \(\frac{sin \frac{x}{2}}{cos \frac{x}{2}}\) = \(\frac{3}{√10}\)(\(\frac{√10}{1}\)) = -3

 

4. Show that using the formula of submultiple angles tan 6˚ tan 42˚ tan 66˚ tan 78˚ = 1.

Solution:  

L.H.S = tan 6˚ tan 42˚ tan 66˚ tan 78˚

= \(\frac{(2 sin 6˚ sin 66˚) (2 sin 42˚ sin 78˚)}{(2 cos 6˚ cos 66˚) ( 2 cos 42˚ cos 78˚)}\)

= \(\frac{( cos 60˚ - cos 72˚)( cos 36˚ - cos 120˚)}{( cos 60˚ + cos 72˚)( cos 36˚ + cos 120˚)}\)

= \(\frac{(\frac{1}{2} - sin 18˚) ( cos 36˚ + \frac{1}{2})}{(\frac{1}{2} + sin 18˚) ( cos 36˚ - \frac{1}{2})}\), [Since, cos 72˚ = cos (90˚ - 18˚) = sin 18˚ and cos 120˚ = cos ( 180˚ - 60˚) = - cos 60˚ = -1/2]

= \(\frac{(\frac{1}{2} - \frac{√5 - 1}{4}) (\frac{√5 + 1}{4} + \frac{1}{2})}{(\frac{1}{2} + \frac{√5 - 1}{4}) (\frac{√5 + 1}{4} - \frac{1}{2})}\), [ putting the values of sin 18˚ and cos 36˚]

= \(\frac{(3 - √5) ( 3 + √5)}{(√5 + 1) (√5 - 1) }\)

= \(\frac{9 - 5}{5 - 1}\)

= \(\frac{4}{4}\)

= 1 = R.H.S.              Proved.

 

5.  Without using table prove that, sin 12° sin 48° sin 54˚ = \(\frac{1}{8}\)

Solution:

L. H. S. = sin 12° sin 48° sin 54° 

= \(\frac{1}{2}\) (2 sin 12°sin 48°) sin (90°- 36°) 

= \(\frac{1}{2}\) [cos 36°- cos 60°] cos 36°

= \(\frac{1}{2}\) [√\(\frac{√5 + 1}{4}\) - \(\frac{1}{2}\)] \(\frac{√5 + 1}{4}\), [Since, cos 36˚ = \(\frac{√5 + 1}{4}\)]

= \(\frac{1}{2}\) ∙ \(\frac{√5 - 1}{4}\) ∙ \(\frac{√5 + 1}{4}\)

= \(\frac{4}{32}\)

= \(\frac{1}{8}\) =  R.H.S.              Proved.

 Submultiple Angles





11 and 12 Grade Math

From Problems on Submultiple Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More