Problems on Right Circular Cylinder

Here we will learn how to solve different types of problems on right circular cylinder.

1. A solid, metallic, right circular cylindrical block of radius 7 cm and height 8 cm is melted and small cubes of edge 2 cm are made from it. How many such cubes can be made from the block?

Solution:

For the right circular cylinder, we have radius (r) = 7 cm, height (h) = 8 cm.

Therefore, its volume = πr\(^{2}\)h

                               = \(\frac{22}{7}\) × 7\(^{2}\) × 8 cm\(^{3}\)

                               = 1232 cm3

The volume of a cube = (edge)\(^{3}\)

                                = 2\(^{3}\) cm\(^{3}\)

                                = 8 cm\(^{3}\)

Therefore, the number of cubes that can be made = volume of the cylinder/volume of a cube

                                                                        = \(\frac{1232 cm^{3}}{8cm^{3}}\)

                                                                        = 154

Therefore, 154 cubes can be made from the block.


2. The height of a cylindrical pillar is 15 m. The diameter of its base is 350 cm. What will be the cost of painting the curved surface of the pillar at Rs 25 per m\(^{2}\)?

Solution:

The base is circular and so the pillar is a right circular cylinder.

Height of a Cylindrical Pillar

Here, radius = 175 cm = 1.75 m and height = 15 m

Therefore, the curved surface area of the pillar = 2πrh

                                                                    = 2 × \(\frac{22}{7}\) × 1.75 × 15 m\(^{2}\)

                                                                    = 165 m\(^{2}\)

Therefore, the cost of painting this area = Rs 25 × 165 = Rs 4125.


3. A cylindrical container is to be made of tin. The height of the container is 1 m and the diameter of the base is 1 m. If the container is open at the top and tin sheet costs Rs 308 per m\(^{2}\), what will be the cost of tin for making the container?

Solution:

Given, diameter of the base is 1 m.

A Cylindrical Container

Here, radius = r = \(\frac{1}{2}\) m and height = h = 1 m.

Total area of tin sheet required = curved surface area + area of the base

                                              = 2πrh + πr\(^{2}\)

                                              = πr(2h + r)

                                              = π ∙ \(\frac{1}{2}\) ∙ (2 × 1 + \(\frac{1}{2}\)) m\(^{2}\)

                                              = \(\frac{5π}{4}\) m\(^{2}\)

                                              = \(\frac{5}{4}\) ∙  \(\frac{22}{7}\)m\(^{2}\)

                                              = \(\frac{55}{14}\) m\(^{2}\)

Therefore, the cost of tin = Rs 308 × \(\frac{55}{14}\) = Rs 1210.


4. The dimensions of a rectangular piece of paper are 22 cm × 14 cm. It is rolled once across the breadth and once across the length to form right circular cylinders of biggest possible surface areas. Find the difference in volumes of the two cylinders that will be formed.

Solution:

Dimensions of a Rectangular Piece

When rolled across the breadth

Circumference of the cross section = 14 cm and height = 22 cm

Circumference of the Cross Section

Therefore, 2πr = 14 cm

or, r = \(\frac{14}{2π}\) cm

or, r = \(\frac{14}{2 × \frac{22}{7}}\) cm

or, r = \(\frac{49}{22}\) cm


When rolled across the length

Circumference of the cross section = 22 cm and height = 14 cm

Circumference of the Cross Section of Cylinder

Therefore, 2πR = 22 cm

or, R = \(\frac{22}{2π}\) cm

or, r = \(\frac{22}{2 × \frac{22}{7}}\) cm

or, r = \(\frac{7}{2}\) cm

Therefore, volume = πR\(^{2}\)h

                           = \(\frac{22}{7}\) × (\(\frac{7}{2}\))\(^{2}\) × 14 cm\(^{3}\)

                           = 11 × 49 cm\(^{3}\)

Therefore, the difference in volumes = (11 × 49 - 7 × 49) cm\(^{3}\)

                                                     = 4 × 49 cm\(^{3}\)

                                                     = 196 cm\(^{3}\)

Therefore, 196 cm\(^{3}\) is the difference in volumes of the two cylinders.







9th Grade Math

From Problems on Right Circular Cylinder to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Capacity | Add the Different Units of Capacity | Examples

    Nov 14, 24 03:03 PM

    Addition of Measurement of Capacity
    In addition of capacity we will learn how to add the different units of capacity and volume together. While adding we need to follow that the units of capacity i.e., liter and milliliter

    Read More

  2. Measuring Capacity | Standard Unit of Capacity | Litre | Millilitres

    Nov 14, 24 02:40 PM

    2 Tablespoonful of Water
    We will discuss about measuring capacity. The milkman measures milk in liters. Petrol is given in liters. Mobil oil is sold in liters. Two milk bottles contain 1 liter of milk. One milk bottle

    Read More

  3. Subtraction of Mass | Difference Between the Units of Mass | Examples

    Nov 14, 24 09:16 AM

    Subtraction of Measurement of Weight
    In subtraction of mass we will learn how to find the difference between the units of mass or weight. While subtracting we need to follow that the units of mass i.e., kilogram and gram

    Read More

  4. Worksheet on Subtraction of Mass |Word Problems on Subtraction of Mass

    Nov 13, 24 02:00 PM

    Worksheet on Subtraction of Mass
    Practice the third grade math worksheet on subtraction of mass or weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More

  5. Worksheet on Addition of Mass | Word problems on Addition of Mass

    Nov 13, 24 10:24 AM

    Practice the third grade math worksheet on addition of mass/weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More