Problems on Properties of Isosceles Triangles

Here we will solve some numerical problems on the properties of isosceles triangles.

1. Find x° from the below figures.

Problems on Properties of Isosceles Triangles

Solution: 

In ∆XYZ, XY = XZ.

Therefore, ∠XYZ = ∠XZY = x°.

Now, ∠YXZ + ∠XYZ + XZY = 180°

⟹ 84° + x° + x° = 180°

⟹ 2x° = 180° - 84°

⟹ 2x° = 96°

⟹ x° = 48°

2. Find x° from the given figures.

Problems on Isosceles Triangles

Solution: 

LMN, LM = MN.

Therefore, ∠MLN = ∠MNL

Thus, ∠MLN = ∠MNL = 55°, [since ∠MLN = 55°]

Now, ∠MLN + ∠LMN + ∠MNL = 180°

⟹ 55° + x° + 55° = 180°

⟹ x° + 110° = 180°

⟹ x° = 180° - 110°

⟹ x° = 70°


3. Find x° and y° from the given figure.

Problems Based on Isosceles Triangles

Solution:

In ∆XYP,

∠YXP = 180° - ∠QXY, as they form a linear pair.

Therefore, ∠YXP = 180° - 130°

⟹ ∠YXP = 50°

Now, XP = YP

⟹ ∠YXP = ∠XYP = 50°.

Therefore, ∠XPY = 180° - (∠YXP + ∠XYP), as the sum of three angles of a triangle is 180°

⟹ ∠XPY = 180° - (50° + 50°)

⟹ ∠XPY = 180° - 100°

⟹ ∠XPY = 80°

Now, x° = ∠XPZ = 180° - ∠XPY (linear pair).

⟹ x° = 180° - 80°

⟹ x° = 100°

Also, in ∆XPZ we have,

XP = ZP

Therefore, ∠PXZ = ∠XZP = z°

Therefore, in ∆XPZ we have,

∠XPZ + ∠PXZ + ∠XZP = 180°

⟹ x° + z° + z° = 180°

⟹ 100° + z° + z° = 180°

⟹ 100° + 2z° = 180°

⟹ 2z° = 180° - 100°

⟹ 2z° = 80°

⟹ z° = \(\frac{80°}{2}\)

⟹ z° = 40°

Therefore, y° = ∠XZR = 180° - ∠XZP

⟹ y° = 180° - 40°

⟹ y° = 140°.

4. In the adjoining figure, it is given that XY = 3y, XZ = 7x, XP = 9x and XQ = 13 + 2y. Find the values of x and y.

Problem Based on Isosceles Triangles

Solution:

It is given that XY = XZ

Therefore, 3y = 7x

⟹ 7x - 3y = 0 ............................ (I)

Also, we have XP = XQ

Therefore, 9x = 13 + 2y

⟹ 9x – 2y – 13 = 0 ............................ (II)

Multiplying (I) by (II), we get:

14x - 6y = 0 ............................ (III)

Multiplying (II) by (III), we get:

27x – 6y – 39 = 0 ............................ (IV)

Subtracting (III) from (IV) we get,

13x - 39 = 0

⟹ 13x = 39

⟹ x = \(\frac{39}{13}\)

⟹ x = 3

Substituting x = 3 in (I) we get,

7 × 3 – 3y = 0

⟹ 21 – 3y =0

⟹ 21 = 3y

⟹ 3y = 21

⟹ y = \(\frac{21}{3}\)

⟹ y = 7.

Therefore, x = 3 and y = 7.





9th Grade Math

From Problems on Properties of Isosceles Triangles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More

  2. Worksheet on Addition of Mass | Word problems on Addition of Mass

    Nov 17, 24 10:26 PM

    Practice the third grade math worksheet on addition of mass/weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More

  3. Worksheet on Addition of Capacity | Word Problems on Adding capacity

    Nov 17, 24 10:19 PM

    Worksheet on Addition of Capacity
    Practice the third grade math worksheet on addition of capacity. This sheet provides different types of questions where you need to arrange the values of capacity under different columns of litres and

    Read More

  4. Subtraction of Capacity | Units of Capacity and Volume | Examples

    Nov 17, 24 10:07 PM

    Subtraction of Capacity
    In subtraction of capacity we will learn how to find the difference between the units of capacity and volume. While subtracting we need to follow that the units of capacity

    Read More

  5. Measuring Capacity | Standard Unit of Capacity | Litre | Millilitres

    Nov 17, 24 01:37 PM

    2 Tablespoonful of Water
    We will discuss about measuring capacity. The milkman measures milk in liters. Petrol is given in liters. Mobil oil is sold in liters. Two milk bottles contain 1 liter of milk. One milk bottle

    Read More