Problems on Parallelogram

These are the various types of solved problems on parallelogram.

1. Prove that any two adjacent angles of a parallelogram are supplementary.

Solution:

Let ABCD be a parallelogram

Problems on Parallelogram

Then, AD ∥ BC and AB is a transversal. 

Therefore, A + B = 180° [Since, sum of the interior angles on the same side of the transversal is 180°] 

Similarly, ∠B + ∠C = 180°, ∠C + ∠D = 180° and ∠D + ∠A = 180°. 

Thus, the sum of any two adjacent angles of a parallelogram is 180°. 

Hence, any two adjacent angles of a parallelogram are supplementary. 



2. Two adjacent angles of a parallelogram are as 2 : 3. Find the measure of each of its angles.

Solution:

Let ABCD be a given parallelogram

Problems on Parallelogram

Then, ∠A and ∠B are its adjacent angles.

Let ∠A = (2x)° and ∠B = (3x)°.

Then, ∠A + ∠B = 180° [Since, sum of adjacent angles of a ∥gm is 180°]

⇒ 2x + 3x = 180

⇒ 5x = 180

⇒ x = 36.

Therefore, ∠A = (2 × 36)° = 72° and ∠B = (3 × 36°) = 108°.

Also, ∠B + ∠C = 180° [Since, ∠B and ∠C are adjacent angles]

= 108° + ∠C = 180° [Since, ∠B = 108°]

∠C = (180° - 108°) = 72°.

Also, ∠C + ∠D = 180° [Since, ∠C and ∠D are adjacent angles]

⇒ 72° + ∠D = 180°

⇒ ∠D = (180° - 72°) 108°.

Therefore, ∠A = 72°, ∠B = 108°, ∠C = 72°and ∠D = 108°.



3. In the adjoining figure, ABCD is a parallelogram in which ∠A = 75°. Find the measure of each of the angles ∠B, ∠C and ∠D.

Solution:

It is given that ABCD is a parallelogram in which ∠A = 75°.

Problems on Parallelogram

Since the sum of any two adjacent angles of a parallelogram is 180°,

∠A + ∠B = 180°

⇒ 75° + ∠B = 180°

⇒∠B = (180° - 75°) = 105°

Also, ∠B + ∠C = 180° [Since, ∠B and ∠C are adjacent angles]

⇒ 105° + ∠C = 180°

⇒ ∠C = (180° - 105°) = 75°.

Further, ∠C + ∠D = 180° [Since, ∠C and ∠D are adjacent angles]

⇒ 75° + ∠D = 180°

⇒ ∠D = (180° - 75°) = 105°.

Therefore, ∠B = 105°, ∠C = 75° and ∠D = 105°.



4. In the adjoining figure, ABCD is a parallelogram in which

∠BAD = 75° and ∠DBC = 60°. Calculate:

(i) ∠CDB and (ii) ∠ADB.

Problems on Parallelogram

Solution:

We know that the opposite angles of a parallelogram are equal.

Therefore, ∠BCD = ∠BAD = 75°.

(i) Now, in ∆ BCD, we have

∠CDB + ∠DBC + ∠BCD = 180° [Since, sum of the angles of a triangle is 180°]

⇒ ∠CDB + 60° + 75° = 180°

⇒ ∠CDB + 135° = 180°

⇒ ∠CDB = (180° - 135°) = 45°.

(ii) AD ∥ BC and BD is the transversal.

Therefore, ∠ADB = ∠DBC = 60° [alternate interior angles]

Hence, ∠ADB = 60°.


5. In the adjoining figure, ABCD is a parallelogram in which

∠CAD = 40°, ∠BAC = 35° and ∠COD = 65°.

Calculate: (i) ∠ABD (ii) ∠BDC (iii) ∠ACB (iv) ∠CBD.

Problems on Parallelogram

Solution:

(i) ∠AOB = ∠COD = 65° (vertically opposite angles)

Now, in ∆OAB, we have:

∠OAB + ∠ABO + ∠AOB =180° [Since, sum of the angles of a triangle is 180°]

⇒ 35°+ ∠ABO + 65° = 180°

⇒ ∠ABO + 100° = 180°

⇒ ∠ABO = (180° - 100°) = 80°

⇒ ∠ABD = ∠ABO = 80°.

(ii) AB ∥ DC and BD is a transversal.

Therefore, ∠BDC = ∠ABD = 80° [alternate interior angles]

Hence, ∠BDC = 80°.

(iii) AD ∥ BC and AC is a transversal.

Therefore, ∠ACB = ∠CAD = 40° [alternate interior angles]

Hence, ∠ACB = 40°.

(iv) ∠BCD = ∠BAD = (35° + 40°) = 75° [opposite angles of a parallelogram]

Now, in ∆CBD, we have

∠BDC + ∠BCD + ∠CBD = 180° [sum of the angles of a triangle is 180°]

⇒ 80° + 75° + ∠CBD = 180°

⇒ 155° + ∠CBD = 180°

⇒ ∠CBD = (180° - 155°) = 25°.

Hence, ∠CBD = 25°.



6. In the adjoining figure, ABCD is a parallelogram, AO and BO are the bisectors of ∠A and ∠B respectively. Prove that ∠AOB = 90°.

Problems on Parallelogram

Solution:

We know that the sum of two adjacent angles of a parallelogram is 180°

Therefore, ∠A + ∠B = 180° ……………. (i)

Since AO and BO are the bisectors of ∠A and ∠B, respectively, we have

∠OAB = 1/2∠A and ∠ABO = 1/2∠B.

From ∆OAB, we have

∠OAB + ∠AOB + ∠ABO = 180° [Since, sum of the angles of a triangle is 180°]

⇒ ¹/₂∠A + ∠ABO + ¹/₂∠B = 180°

⇒ ¹/₂(∠A + ∠B) + ∠AOB = 180°

⇒ (¹/₂ × 180°) + ∠AOB = 180° [using (i)]

⇒ 90° + ∠AOB = 180°

⇒ ∠AOB = (180° - 90°) = 90°.

Hence, ∠AOB = 90°.



7. The ratio of two sides of a parallelogram is 4 : 3. If its perimeter is 56 cm, find the lengths of its sides.

Solution:

Let the lengths of two sides of the parallelogram be 4x cm and 3x cm respectively.

Then, its perimeter = 2(4x + 3x) cm = 8x + 6x = 14x cm.

Therefore, 14x = 56 ⇔ x = ⁵⁶/₁₄ = 4.

Therefore, one side = (4 × 4) cm = 16 cm and other side = (3 × 4) cm = 12 cm.



8. The length of a rectangle is 8 cm and each of its diagonals measures 10 cm. Find its breadth.

Solution:

Let ABCD be the given rectangle in which length AB = 8 cm and diagonal AC = 10 cm.

Problems on Parallelogram

Since each angle of a rectangle is a right angle, we have

∠ABC = 90°.

From right ∆ABC, we have

AB² + BC² = AC² [Pythagoras’ Theorem]

⇒ BC² = (AC² - AB²) = {(1O)² - (8)²} = (100 - 64) = 36

⇒ BC = √36 = 6cm.

Hence, breadth = 6 cm.



9. In the adjacent figure, ABCD is a rhombus whose diagonals AC and BD intersect at a point O. If side AB = 10cm and diagonal BD = 16 cm, find the length of diagonal AC.

Problems on Parallelogram

Solution:

We know that the diagonals of a rhombus bisect each other at right angles

Therefore, BO = ¹/₂BD = (¹/₂ × 16) cm = 8 cm, AB = 10 cm and ∠AOB = 90°.

From right ∆OAB, we have

AB² = AO² + BO²

⇒ AO² = (AB² – BO²) = {(10) ² - (8)²} cm²

                             = (100 - 64) cm²

                             = 36 cm²

     ⇒ AO = √36 cm = 6 cm.

Therefore, AC = 2 × AO = (2 × 6) cm = 12 cm.



Parallelogram

Parallelogram

Properties of a Rectangle Rhombus and Square

Problems on Parallelogram

Practice Test on Parallelogram


Parallelogram - Worksheet

Worksheet on Parallelogram







8th Grade Math Practice

From Problems on Parallelogram to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 22, 24 01:00 AM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 22, 24 12:12 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  5. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More