Problems on Irrational Numbers

Till here we have learnt many concepts regarding irrational numbers. Under this topic we will be solving some problems related to irrational numbers. It will contain problems from all topics of irrational numbers.

Before moving to problems, one should look at the basic concepts regarding the comparison of irrational numbers.

For comparing them, we should always keep in mind that if square or cube roots of two numbers (‘a’ and ‘b’) are to be compared, such that ‘a’ is greater than ‘b’, then a\(^{2}\) will be greater than b\(^{2}\) and a\(^{3}\) will be greater than b\(^{2}\) and so on, i.e., n\(^{th}\) power of ‘a’ will be greater than n\(^{th}\) power of ‘b’. 

The same concept is to be applied for the comparison between rational and irrational numbers. 


So, now let’s have look at some problems given below:

1. Compare √11 and √21.

Solution: 

Since the given numbers are not the perfect square roots so the numbers are irrational numbers. To compare them let us first compare them into rational numbers. So,

(√11)\(^{2}\) = √11 × √11 = 11.

(√21)\(^{2}\) = √21 × √21 = 21.

Now it is easier to compare 11 and 21. 

Since, 21 > 11. So, √21 > √11.


2. Compare √39 and √19.

Solution: 

Since the given numbers are not the perfect square roots of any number, so they are irrational numbers. To compare them, we will first compare them into rational numbers and then perform the comparison. So,

(√39)\(^{2}\) = √39 × √39 = 39.

(√19)\(^{2}\) = √19 × √19 = 19

Now it is easier to compare 39 and 19. Since, 39 > 19.

So,√39 > √19.


3. Compare \(\sqrt[3]{15}\) and \(\sqrt[3]{11}\).

Solution: 

Since the given numbers are not the perfect cube roots. So, to make comparison between them e first need to convert them into rational numbers and then perform the comparison. So,

\((\sqrt[3]{15})^{3}\) = \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) = 15.

\((\sqrt[3]{11})^{3}\) = \(\sqrt[3]{11}\) × \(\sqrt[3]{11}\) × \(\sqrt[3]{11}\) = 11.

Since, 15 > 11. So, \(\sqrt[3]{15}\) > \(\sqrt[3]{11}\).


4. Compare 5 and √17.

Solution: 

Among the numbers given, one of them is rational while other one is irrational. So, to make comparison between them, we will raise both of them to them to the same power such that the irrational one becomes rational. So,

(5)\(^{2}\) = 5 × 5 = 25.

(√17)\(^{2}\) = √17 x × √17 = 17.

Since, 25 > 17. So, 5 > √17.


5. Compare 4 and \(\sqrt[3]{32}\).

Solution: 

Among the given numbers to make comparison, one of them is rational while other one is irrational. So, to make comparison both numbers will be raised to the same power such that the irrational one becomes rational. So,

4\(^{3}\)= 4 × 4 × 4 = 64.

\((\sqrt[3]{32})^{3}\) = \(\sqrt[3]{32}\) × \(\sqrt[3]{32}\) × \(\sqrt[3]{32}\) = 32.

Since, 64 > 32. So, 4 > \(\sqrt[3]{32}\).


6. Rationalize \(\frac{1}{4 + \sqrt{2}}\).

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

\(\frac{1}{4 + \sqrt{2}} \times (\frac{4 - \sqrt{2}}{4 - \sqrt{2}})\)

⟹ \(\frac{4 - \sqrt{2}}{4^{2} - \sqrt{2^{2}}}\)

⟹ \(\frac{4 - \sqrt{2}}{16 - 2}\)

⟹ \(\frac{4 - \sqrt{2}}{14}\)

So the rationalized fraction is: \(\frac{4 - \sqrt{2}}{14}\).


7. Rationalize \(\frac{2}{14 - \sqrt{26}}\).

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

\(\frac{2}{14 - \sqrt{26}} \times \frac{14 + \sqrt{26}}{14 + \sqrt{26}}\)


⟹ \(\frac{2(14 - \sqrt{26})}{14^{2} - \sqrt{26^{2}}}\)

⟹ \(\frac{2(14 - \sqrt{26})}{196 - 26}\)

⟹ \(\frac{2(14 - \sqrt{26})}{170}\)

 So, the rationalized fraction is: \(\frac{2(14 - \sqrt{26})}{170}\).

Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers





9th Grade Math

From Problems on Irrational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 22, 24 01:00 AM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 22, 24 12:12 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  5. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More