Problems on Irrational Numbers

Till here we have learnt many concepts regarding irrational numbers. Under this topic we will be solving some problems related to irrational numbers. It will contain problems from all topics of irrational numbers.

Before moving to problems, one should look at the basic concepts regarding the comparison of irrational numbers.

For comparing them, we should always keep in mind that if square or cube roots of two numbers (‘a’ and ‘b’) are to be compared, such that ‘a’ is greater than ‘b’, then a\(^{2}\) will be greater than b\(^{2}\) and a\(^{3}\) will be greater than b\(^{2}\) and so on, i.e., n\(^{th}\) power of ‘a’ will be greater than n\(^{th}\) power of ‘b’. 

The same concept is to be applied for the comparison between rational and irrational numbers. 


So, now let’s have look at some problems given below:

1. Compare √11 and √21.

Solution: 

Since the given numbers are not the perfect square roots so the numbers are irrational numbers. To compare them let us first compare them into rational numbers. So,

(√11)\(^{2}\) = √11 × √11 = 11.

(√21)\(^{2}\) = √21 × √21 = 21.

Now it is easier to compare 11 and 21. 

Since, 21 > 11. So, √21 > √11.


2. Compare √39 and √19.

Solution: 

Since the given numbers are not the perfect square roots of any number, so they are irrational numbers. To compare them, we will first compare them into rational numbers and then perform the comparison. So,

(√39)\(^{2}\) = √39 × √39 = 39.

(√19)\(^{2}\) = √19 × √19 = 19

Now it is easier to compare 39 and 19. Since, 39 > 19.

So,√39 > √19.


3. Compare \(\sqrt[3]{15}\) and \(\sqrt[3]{11}\).

Solution: 

Since the given numbers are not the perfect cube roots. So, to make comparison between them e first need to convert them into rational numbers and then perform the comparison. So,

\((\sqrt[3]{15})^{3}\) = \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) = 15.

\((\sqrt[3]{11})^{3}\) = \(\sqrt[3]{11}\) × \(\sqrt[3]{11}\) × \(\sqrt[3]{11}\) = 11.

Since, 15 > 11. So, \(\sqrt[3]{15}\) > \(\sqrt[3]{11}\).


4. Compare 5 and √17.

Solution: 

Among the numbers given, one of them is rational while other one is irrational. So, to make comparison between them, we will raise both of them to them to the same power such that the irrational one becomes rational. So,

(5)\(^{2}\) = 5 × 5 = 25.

(√17)\(^{2}\) = √17 x × √17 = 17.

Since, 25 > 17. So, 5 > √17.


5. Compare 4 and \(\sqrt[3]{32}\).

Solution: 

Among the given numbers to make comparison, one of them is rational while other one is irrational. So, to make comparison both numbers will be raised to the same power such that the irrational one becomes rational. So,

4\(^{3}\)= 4 × 4 × 4 = 64.

\((\sqrt[3]{32})^{3}\) = \(\sqrt[3]{32}\) × \(\sqrt[3]{32}\) × \(\sqrt[3]{32}\) = 32.

Since, 64 > 32. So, 4 > \(\sqrt[3]{32}\).


6. Rationalize \(\frac{1}{4 + \sqrt{2}}\).

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

\(\frac{1}{4 + \sqrt{2}} \times (\frac{4 - \sqrt{2}}{4 - \sqrt{2}})\)

⟹ \(\frac{4 - \sqrt{2}}{4^{2} - \sqrt{2^{2}}}\)

⟹ \(\frac{4 - \sqrt{2}}{16 - 2}\)

⟹ \(\frac{4 - \sqrt{2}}{14}\)

So the rationalized fraction is: \(\frac{4 - \sqrt{2}}{14}\).


7. Rationalize \(\frac{2}{14 - \sqrt{26}}\).

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

\(\frac{2}{14 - \sqrt{26}} \times \frac{14 + \sqrt{26}}{14 + \sqrt{26}}\)


⟹ \(\frac{2(14 - \sqrt{26})}{14^{2} - \sqrt{26^{2}}}\)

⟹ \(\frac{2(14 - \sqrt{26})}{196 - 26}\)

⟹ \(\frac{2(14 - \sqrt{26})}{170}\)

 So, the rationalized fraction is: \(\frac{2(14 - \sqrt{26})}{170}\).

Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers





9th Grade Math

From Problems on Irrational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:53 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More