Here we will solve different types of Problems on Factorization using a\(^{2}\) – b\(^{2}\) = (a + b)(a – b).
1. Factorize: 4a\(^{2}\) – b\(^{2}\) + 2a + b
Solution:
Given expression = 4a\(^{2}\) – b\(^{2}\) + 2a + b
= (4a\(^{2}\) – b\(^{2}\)) + 2a + b
= {(2a)\(^{2}\) – b\(^{2}\)} + 2a + b
= (2a + b)(2a – b) + 1(2a + b)
= (2a + b)(2a – b + 1)
2. Factorize: x\(^{3}\) – 3x\(^{2}\) – x + 3
Solution:
Given expression = x\(^{3}\) – 3x\(^{2}\) – x + 3
= (x\(^{3}\) – 3x\(^{2}\)) – x + 3
= x\(^{2}\)(x – 3) – 1(x – 3)
= (x – 3)(x\(^{2}\) – 1)
= (x – 3)(x\(^{2}\) – 1\(^{2}\))
= (x – 3)(x + 1)(x - 1)
3. Factorize: 4x\(^{2}\) – y\(^{2}\) + 2x – 2y – 3xy
Solution:
Given expression = 4x\(^{2}\) – y\(^{2}\) + 2x – 2y – 3xy
= x\(^{2}\) – y\(^{2}\) + 2x – 2y + 3x\(^{2}\) – 3xy
= (x + y)(x – y) + 2(x – y) + 3x(x – y)
= (x – y)(x + y + 2 + 3x)
= (x – y)(4x + y + 2)
4. Factorize: a\(^{4}\) + a\(^{2}\)b\(^{2}\) + b\(^{4}\)
Solution:
Given expression = a\(^{4}\) + a\(^{2}\)b\(^{2}\) + b\(^{4}\)
= a\(^{4}\) + 2a\(^{2}\)b\(^{2}\) + b\(^{4}\) - a\(^{2}\)b\(^{2}\)
= (a\(^{2}\))\(^{2}\) + 2 ∙ a\(^{2}\) ∙ b\(^{2}\) + (b\(^{2}\))\(^{2}\) - a\(^{2}\)b\(^{2}\)
= (a\(^{2}\) + b\(^{2}\))\(^{2}\) – (ab)\(^{2}\)
= (a\(^{2}\) + b\(^{2}\) + ab)( a\(^{2}\) + b\(^{2}\) – ab)
5. Factorize: x\(^{2}\) – 3x - 28
Solution:
Given expression = x\(^{2}\) – 3x - 28
= {x\(^{2}\) – 2 ∙ x ∙ \(\frac{3}{2}\) + (\(\frac{3}{2}\))\(^{2}\)} – (\(\frac{3}{2}\))\(^{2}\) - 28
= (x - \(\frac{3}{2}\))\(^{2}\) – (\(\frac{9}{4}\) + 28)
= (x - \(\frac{3}{2}\))\(^{2}\) – \(\frac{121}{4}\)
= (x - \(\frac{3}{2}\))\(^{2}\) – (\(\frac{11}{2}\))\(^{2}\)
= (x - \(\frac{3}{2}\) + \(\frac{11}{2}\))(x - \(\frac{3}{2}\) - \(\frac{11}{2}\))
= (x + 4)(x – 7)
6. Factorize: x\(^{2}\) + 5x + 5y – y\(^{2}\)
Solution:
Given expression = x\(^{2}\) + 5x + 5y – y\(^{2}\)
= (x\(^{2}\) – y\(^{2}\)) + 5x + 5y
= (x + y)(x – y) + 5(x + y)
= (x + y)(x – y + 5)
7. Factorize: x\(^{2}\) + xy – 2y - 4
Solution:
Given expression = x\(^{2}\) + xy – 2y – 4
= (x\(^{2}\) – 4) + xy – 2y
= (x\(^{2}\) – 2\(^{2}\)) + y(x – 2)
= (x + 2)(x – 2) + y(x – 2)
= (x - 2)(x + 2 + y)
= (x - 2)(x + y + 2)
8. Factorize: a\(^{2}\) – b\(^{2}\) – 10a + 25
Solution:
Given expression = a\(^{2}\) – b\(^{2}\) – 10a + 25
= (a\(^{2}\) – 10a + 25) – b\(^{2}\)
= (a\(^{2}\) – 2 ∙ a ∙ 5 + 5\(^{2}\)) – b\(^{2}\)
= (a – 5)\(^{2}\)– b\(^{2}\)
= (a – 5 + b)(a – 5 – b)
= (a + b – 5)(a – b – 5)
9. Factorize: x(x – 2) – y(y – 2)
Solution:
Given expression = x(x – 2) – y(y – 2)
= x\(^{2}\) – 2x – y\(^{2}\) + 2y
= (x\(^{2}\) – y\(^{2}\)) – 2x + 2y
= (x + y)(x – y) – 2(x – y)
= (x – y)(x + y – 2).
10. Factorize: a\(^{3}\) + 2a\(^{2}\) – a - 2
Solution:
Given expression = a\(^{3}\) + 2a\(^{2}\) – a - 2
= a\(^{2}\)(a + 2) – 1(a + 2)
= (a + 2)(a\(^{2}\) – 1)
= (a + 2)(a\(^{2}\) – 1\(^{2}\))
= (a + 2)(a + 1)(a – 1)
11. Factorize: a\(^{4}\) + 64
Solution:
Given expression = a\(^{4}\) + 64
= (a\(^{2}\))\(^{2}\) + 8\(^{2}\)
= (a\(^{2}\))\(^{2}\) + 2 ∙ a\(^{2}\) ∙ 8 + 8\(^{2}\) - 2 ∙ a\(^{2}\) ∙ 8
= (a\(^{2}\) + 8)\(^{2}\) – 16a\(^{2}\)
= (a\(^{2}\) + 8)\(^{2}\) – (4a)\(^{2}\)
= (a\(^{2}\) + 8 + 4a)(a\(^{2}\) + 8 - 4a)
= (a\(^{2}\) + 4a + 8)(a\(^{2}\) - 4a + 8)
11. Factorize: x\(^{4}\) + 4
Solution:
Given expression = x\(^{4}\) + 4
= (x\(^{2}\))\(^{2}\) + 2\(^{2}\)
= (x\(^{2}\))\(^{2}\) + 2 ∙ x\(^{2}\) ∙ 2 + 2\(^{2}\) - 2 ∙ x\(^{2}\) ∙ 2
= (x\(^{2}\) + 2)\(^{2}\) – 4x\(^{2}\)
= (x\(^{2}\) + 2)\(^{2}\) – (2x)\(^{2}\)
= (x\(^{2}\) + 2 + 2x) (x\(^{2}\) + 2 – 2x)
= (x\(^{2}\) + 2x + 2) (x\(^{2}\) – 2x + 2)
12. Express x\(^{2}\) – 5x + 6 as the difference of two squares and then factorize.
Solution:
Given expression = x\(^{2}\) – 5x + 6
= x\(^{2}\) – 2 ∙ x ∙ \(\frac{5}{2}\) + (\(\frac{5}{2}\))\(^{2}\) + 6 - (\(\frac{5}{2}\))\(^{2}\)
= (x - \(\frac{5}{2}\))\(^{2}\) + 6 - \(\frac{25}{4}\)
= (x - \(\frac{5}{2}\))\(^{2}\) - \(\frac{1}{4}\)
= (x - \(\frac{5}{2}\))\(^{2}\) – (\(\frac{1}{2}\))\(^{2}\), [Difference of two squares]
= (x - \(\frac{5}{2}\) + \(\frac{1}{2}\))(x - \(\frac{5}{2}\) - \(\frac{1}{2}\))
= (x – 2)(x - 3)
From Problems on Factorization Using a^2 – b^2 = (a + b)(a – b) to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 25, 24 01:18 AM
Nov 25, 24 01:09 AM
Nov 25, 24 12:48 AM
Nov 25, 24 12:17 AM
Nov 24, 24 11:01 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.