Problems on Ellipse

We will learn how to solve different types of problems on ellipse.

1. Find the equation of the ellipse whose eccentricity is \(\frac{4}{5}\) and axes are along the coordinate axes and with foci at (0, ± 4).

Solution:

Let the equitation of the ellipse is \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ……………… (i)

According to the problem, the coordinates of the foci are (0, ± 4).

Therefore, we see that the major axes of the ellipse is along y axes and the minor axes of the ellipse is along x axes.

We know that the co-ordinates of the foci are (0, ±be).

Therefore, be = 4

b(\(\frac{4}{5}\)) = 4, [Putting the value of e = \(\frac{4}{5}\)]

⇒ b = 5

⇒ b\(^{2}\) = 25

Now, a\(^{2}\) = b\(^{2}\)(1 - e\(^{2}\))

⇒ a\(^{2}\) = 5\(^{2}\)(1 - (\(\frac{4}{5}\))\(^{2}\))

⇒ a\(^{2}\)  = 25(1 - \(\frac{16}{25}\))

⇒ a\(^{2}\) = 9

Now putting the value of a\(^{2}\) and b\(^{2}\) in (i) we get, \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.

Therefore, the required equation of the ellipse is \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.

 

2. Determine the equation of the ellipse whose directrices along y = ± 9 and foci at (0, ± 4). Also find the length of its latus rectum. 

Solution:    

Let the equation of the ellipse be \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1, ……………………………… (i)

The co-ordinate of the foci are (0, ± 4). This means that the major axes of the ellipse is along y axes and the minor axes of the ellipse is along x axes.

We know that the co-ordinates of the foci are (0, ± be) and the equations of directrices are y = ± \(\frac{b}{e}\)

Therefore, \(\frac{b}{e}\) = 9 …………….. (ii)

and be = 4 …………….. (iii)

Now, from (ii) and (iii) we get,

b\(^{2}\) = 36

⇒ b = 6

Now, a\(^{2}\) = b\(^{2}\)(1 – e\(^{2}\))

⇒ a\(^{2}\) = b\(^{2}\) - b\(^{2}\)e\(^{2}\)

⇒ a\(^{2}\) = b\(^{2}\) - (be)\(^{2}\)

⇒ a\(^{2}\) = 6\(^{2}\) - 4\(^{2}\), [Putting the value of be = 4]

⇒ a\(^{2}\) = 36 - 16

⇒ a\(^{2}\) = 20

Therefore, the required equation of the ellipse is \(\frac{x^{2}}{20}\) + \(\frac{y^{2}}{36}\) = 1.

The required length of latus rectum = 2 \(\frac{a^{2}}{b}\) = 2 \(\frac{20}{6}\) = \(\frac{20}{3}\) units.


3. Find the equation of the ellipse whose equation of its directrix is 3x + 4y - 5 = 0, co-ordinates of the focus are (1, 2) and the eccentricity is ½.

Solution:    

Let P (x, y) be any point on the required ellipse and PM be the perpendicular from P upon the directrix 3x + 4y - 5 = 0

Then by the definition,

\(\frac{SP}{PM}\) = e    

⇒  SP = e PM

⇒ \(\sqrt{(x - 1)^{2} + (y - 2)^{2}}\) = ½ |\(\frac{3x + 4y - 5}{\sqrt{3^{2}} + 4^{2}}\)|

⇒ (x - 1)\(^{2}\) + (y - 2)\(^{2}\) = ¼ \(\frac{(3x + 4y - 5)^{2}}{25}\), [Squaring both sides]

⇒ 100(x\(^{2}\) + y\(^{2}\) – 2x – 4y + 5) = 9x\(^{2}\) + 16y\(^{2}\) + 24xy - 30x - 40y + 25

⇒ 91x\(^{2}\) + 84y\(^{2}\) - 24xy - 170x - 360x + 475 = 0, which is the required equation of the ellipse.

● The Ellipse





11 and 12 Grade Math 

From Problems on Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More