Problems on Ellipse

We will learn how to solve different types of problems on ellipse.

1. Find the equation of the ellipse whose eccentricity is \(\frac{4}{5}\) and axes are along the coordinate axes and with foci at (0, ± 4).

Solution:

Let the equitation of the ellipse is \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ……………… (i)

According to the problem, the coordinates of the foci are (0, ± 4).

Therefore, we see that the major axes of the ellipse is along y axes and the minor axes of the ellipse is along x axes.

We know that the co-ordinates of the foci are (0, ±be).

Therefore, be = 4

b(\(\frac{4}{5}\)) = 4, [Putting the value of e = \(\frac{4}{5}\)]

⇒ b = 5

⇒ b\(^{2}\) = 25

Now, a\(^{2}\) = b\(^{2}\)(1 - e\(^{2}\))

⇒ a\(^{2}\) = 5\(^{2}\)(1 - (\(\frac{4}{5}\))\(^{2}\))

⇒ a\(^{2}\)  = 25(1 - \(\frac{16}{25}\))

⇒ a\(^{2}\) = 9

Now putting the value of a\(^{2}\) and b\(^{2}\) in (i) we get, \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.

Therefore, the required equation of the ellipse is \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.

 

2. Determine the equation of the ellipse whose directrices along y = ± 9 and foci at (0, ± 4). Also find the length of its latus rectum. 

Solution:    

Let the equation of the ellipse be \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1, ……………………………… (i)

The co-ordinate of the foci are (0, ± 4). This means that the major axes of the ellipse is along y axes and the minor axes of the ellipse is along x axes.

We know that the co-ordinates of the foci are (0, ± be) and the equations of directrices are y = ± \(\frac{b}{e}\)

Therefore, \(\frac{b}{e}\) = 9 …………….. (ii)

and be = 4 …………….. (iii)

Now, from (ii) and (iii) we get,

b\(^{2}\) = 36

⇒ b = 6

Now, a\(^{2}\) = b\(^{2}\)(1 – e\(^{2}\))

⇒ a\(^{2}\) = b\(^{2}\) - b\(^{2}\)e\(^{2}\)

⇒ a\(^{2}\) = b\(^{2}\) - (be)\(^{2}\)

⇒ a\(^{2}\) = 6\(^{2}\) - 4\(^{2}\), [Putting the value of be = 4]

⇒ a\(^{2}\) = 36 - 16

⇒ a\(^{2}\) = 20

Therefore, the required equation of the ellipse is \(\frac{x^{2}}{20}\) + \(\frac{y^{2}}{36}\) = 1.

The required length of latus rectum = 2 \(\frac{a^{2}}{b}\) = 2 \(\frac{20}{6}\) = \(\frac{20}{3}\) units.


3. Find the equation of the ellipse whose equation of its directrix is 3x + 4y - 5 = 0, co-ordinates of the focus are (1, 2) and the eccentricity is ½.

Solution:    

Let P (x, y) be any point on the required ellipse and PM be the perpendicular from P upon the directrix 3x + 4y - 5 = 0

Then by the definition,

\(\frac{SP}{PM}\) = e    

⇒  SP = e PM

⇒ \(\sqrt{(x - 1)^{2} + (y - 2)^{2}}\) = ½ |\(\frac{3x + 4y - 5}{\sqrt{3^{2}} + 4^{2}}\)|

⇒ (x - 1)\(^{2}\) + (y - 2)\(^{2}\) = ¼ \(\frac{(3x + 4y - 5)^{2}}{25}\), [Squaring both sides]

⇒ 100(x\(^{2}\) + y\(^{2}\) – 2x – 4y + 5) = 9x\(^{2}\) + 16y\(^{2}\) + 24xy - 30x - 40y + 25

⇒ 91x\(^{2}\) + 84y\(^{2}\) - 24xy - 170x - 360x + 475 = 0, which is the required equation of the ellipse.

● The Ellipse





11 and 12 Grade Math 

From Problems on Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:09 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More