We will learn how to solve different types of problems on compound angles using formula.
We will see step-by-step how to deal with the trigonometrical ratios of compound angles in different questions.
1. An angle θ is divided into two parts so that the ratio of the tangents of the parts is k; if the difference between the parts be ф, prove that, sin ф = (k - 1)/(k + 1) sin θ .
Solution:
Let, α and β be the two parts of the angle θ.
Therefore, θ = α + β.
By question, θ = α - β. (assuming a >β)
and tan α/tan β = k
⇒ sin α cos β/sin β cos α = k/1
⇒ (sin α cos β + cos α sin β)/(sin α cos β - cos α sin β) = (k + 1)/(k - 1), [by componendo and dividendo]
⇒ sin (α + β)/sin (α - β) = (k + 1)/(k - 1)
⇒ (k + 1) sin Ø = (k - 1) sin θ, [Since we know that α + β = θ; α + β = ф]
⇒ sin ф = (k - 1)/(k + 1) sin θ. Proved.
2. If x + y = z and
tan x = k tan y, then prove that sin (x - y) = [(k - 1)/(k + 1)] sin z
Solution:
Given tan x = k tan y
⇒ sin x/cos x = k ∙ sin y/cos y
⇒ sin x cos y/cos x sin y = k/1
Applying componendo and dividend, we get
sin x cos y + cos x sin y/ sin x cos y - cos x sin y = k + 1/k - 1
⇒ sin (x + y)/sin (x – y) = k + 1/k - 1
⇒ sin z/sin (x – y) = k + 1/k - 1, [Since x + y = z given]
⇒ sin (x – y) = [k + 1/k – 1] sin z Proved.
3. If A + B + C = π and cos A = cos B cos C, show that, tan B tan C = 2
Solution:
A + B + C = π
Therefore, B + C = π - A
⇒ cos (B + C) = cos (π - A)
⇒ cos B cos C - sin B sin C = - cos A
⇒ cos B cos C + cos B cos C = sin B sin C,[Since we know, cos A = cos B cos C]
⇒ 2 cos B cos C = sin B sin C
⇒ tan B tan C = 2 Proved.
Note: In different problems on compound angles we need to use the formula as required.
4. Prove that cot 2x + tan x = csc 2x
Solution:
L.H.S. = cot 2x + tan x
= cos 2x/sin 2x + sin x/cos x
= cos 2x cos x + sin 2x sin x/sin 2x cos x
= cos (2x - x)/sin 2x cos x
= cos x/sin 2x cos x
= 1/sin 2x
= csc 2x = R.H.S. Proved.
5. If sin (A + B) + sin (B + C) + cos (C - A) = -3/2 show that,
sin A + cos B + sin C = 0; cos A + sin B + cos C = 0.
Solution:
Since, sin (A + B) + sin (B + C) + cos (C - A) = -3/2
Therefore, 2 (sin A cos B + cos A sin B + sin B cos C + cos B sin C + cos C cos A + sin C sin A) = -3
⇒ 2 (sin A cos B + cos A sin B + sin B cos C + cos B sin C + cos C cos A + sin C sin A) = - (1 + 1 + 1)
⇒ 2 (sin A cos B + cos A sin B + sin B cos C + cos B sin C + cos C cos A + sin C sin A) = - [(sin^2 A + cos^2 A) + (sin^2 B + cos^2 B) + (sin^2 C + cos^2 C)]
⇒ (sin^2 A + cos^2 B + sin^2 C + 2 sin A sin C + 2 sin A cos B + 2 cos B sin C) + (cos^2 A + sin^2 B + cos^2 C + 2 cos A sin B + 2 sin B cos C + 2 cos A cos C) = 0
⇒ (sin A + sin B + sin C)^2 + (cos A + sin B + cos C)^2
Now the sum of squares of two real quantities is zero if each quantity is separately zero.
Therefore, sin A + cos B + Sin C = 0
and cos A + sin B + cos C = 0. Proved.
11 and 12 Grade Math
From Problems on Compound Angles to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.