Problems on Compound Angles

We will learn how to solve different types of problems on compound angles using formula.

We will see step-by-step how to deal with the trigonometrical ratios of compound angles in different questions.

1. An angle θ is divided into two parts so that the ratio of the tangents of the parts is k; if the difference between the parts be ф, prove that, sin ф = (k - 1)/(k + 1) sin θ .

Solution:

Let, α and β be the two parts of the angle θ.

Therefore, θ = α + β.

By question, θ = α - β. (assuming a >β)

and tan α/tan β = k 

⇒ sin α cos β/sin β cos α = k/1

⇒ (sin α cos β + cos α sin β)/(sin α cos β - cos α sin β) = (k + 1)/(k - 1), [by componendo and dividendo]

⇒ sin (α + β)/sin (α - β) = (k + 1)/(k - 1)

⇒ (k + 1) sin Ø = (k - 1) sin θ, [Since we know that α + β = θ; α + β = ф]

⇒ sin ф = (k - 1)/(k + 1) sin θ.                                 Proved.

2. If x + y = z and tan x = k tan y, then prove that sin (x - y) = [(k - 1)/(k + 1)] sin z

Solution:

Given tan x = k tan y

⇒ sin x/cos x = k ∙ sin y/cos y

⇒ sin x cos y/cos x sin y = k/1

   Applying componendo and dividend, we get

   sin x cos y + cos x sin y/ sin x cos y - cos x sin y = k + 1/k - 1

⇒ sin (x + y)/sin (x – y) = k + 1/k - 1

⇒ sin z/sin (x – y) = k + 1/k - 1, [Since x + y = z given]

⇒ sin (x – y) = [k + 1/k – 1] sin z                                  Proved.

 

3.  If A + B + C = π and cos A = cos B cos C, show that, tan B tan C = 2

Solution:

   A + B + C = π              

   Therefore, B + C = π - A

⇒ cos (B + C) = cos (π - A)    

⇒ cos B cos C - sin B sin C = - cos A

⇒ cos B cos C + cos B cos C = sin B sin C,[Since we know, cos A = cos B cos C]

⇒ 2 cos B cos C = sin B sin C

⇒ tan B tan C = 2                                 Proved.

 

Note: In different problems on compound angles we need to use the formula as required.

4. Prove that cot 2x + tan x = csc 2x

Solution:

L.H.S. = cot 2x + tan x

         = cos 2x/sin 2x + sin x/cos x

         = cos 2x cos x + sin 2x sin x/sin 2x cos x

         = cos (2x - x)/sin 2x cos x

         = cos x/sin 2x cos x

         = 1/sin 2x

         = csc 2x = R.H.S.                                 Proved.

 

5.  If sin (A + B) + sin (B + C) + cos (C - A) = -3/2 show that,

sin A + cos B + sin C = 0; cos A + sin B + cos C = 0.

Solution:

Since, sin (A + B) + sin (B + C) + cos (C - A) = -3/2

Therefore, 2 (sin A cos B + cos A sin B + sin B cos C + cos B sin C + cos C cos A + sin C sin A) = -3

⇒ 2 (sin A cos B + cos A sin B + sin B cos C + cos B sin C + cos C cos A + sin C sin A) = - (1 + 1 + 1)

⇒ 2 (sin A cos B + cos A sin B + sin B cos C + cos B sin C + cos C cos A + sin C sin A) = - [(sin^2 A + cos^2 A) + (sin^2 B + cos^2 B) + (sin^2 C + cos^2 C)]           

⇒ (sin^2 A + cos^2 B + sin^2 C  + 2 sin A sin C + 2 sin A cos B + 2 cos B sin C) + (cos^2 A + sin^2 B + cos^2 C + 2 cos A sin B + 2 sin B cos C + 2 cos A cos C) = 0

⇒ (sin A + sin B + sin C)^2 + (cos A + sin B + cos C)^2

Now the sum of squares of two real quantities is zero if each quantity is separately zero.

Therefore, sin A + cos B + Sin C = 0

and cos A + sin B + cos C = 0.                                 Proved.







11 and 12 Grade Math

From Problems on Compound Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More