Probability for Rolling Three Dice

Probability for rolling three dice with the six sided dots such as 1, 2, 3, 4, 5 and 6 dots in each (three) dies.

When three dice are thrown simultaneously/randomly, thus number of event can be 63 = (6 × 6 × 6) = 216 because each die has 1 to 6 number on its faces.

Worked-out problems involving probability for rolling three dice:

1. Three dice are thrown together. Find the probability of:

(i) getting a total of 5

(ii) getting a total of atmost 5

(iii) getting a total of at least 5.

(iv) getting a total of 6.

(v) getting a total of atmost 6.

(vi) getting a total of at least 6.

Solution:

Three different dice are thrown at the same time.

Therefore, total number of possible outcomes will be 63 = (6 × 6 × 6) = 216.

(i) getting a total of 5:

Number of events of getting a total of 5 = 6

i.e. (1, 1, 3), (1, 3, 1), (3, 1, 1), (2, 2, 1), (2, 1, 2) and (1, 2, 2)

Therefore, probability of getting a total of 5

               Number of favorable outcomes
P(E1) =     Total number of possible outcome


      = 6/216
      = 1/36

(ii) getting a total of atmost 5:

Number of events of getting a total of atmost 5 = 10

i.e. (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (2, 2, 1) and (1, 2, 2).

Therefore, probability of getting a total of atmost 5

               Number of favorable outcomes
P(E2) =     Total number of possible outcome


      = 10/216
      = 5/108

(iii) getting a total of at least 5:

Number of events of getting a total of less than 5 = 4

i.e. (1, 1, 1), (1, 1, 2), (1, 2, 1) and (2, 1, 1).

Therefore, probability of getting a total of less than 5

               Number of favorable outcomes
P(E3) =     Total number of possible outcome


      = 4/216
      = 1/54

Therefore, probability of getting a total of at least 5 = 1 - P(getting a total of less than 5)

= 1 - 1/54

= (54 - 1)/54

= 53/54

(iv) getting a total of 6:

Number of events of getting a total of 6 = 10

i.e. (1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) and (2, 2, 2).

Therefore, probability of getting a total of 6

               Number of favorable outcomes
P(E4) =     Total number of possible outcome


      = 10/216
      = 5/108

(v) getting a total of atmost 6:

Number of events of getting a total of atmost 6 = 20

i.e. (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (2, 2, 1), (1, 2, 2), (1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) and (2, 2, 2).

Therefore, probability of getting a total of atmost 6

               Number of favorable outcomes
P(E5) =     Total number of possible outcome


      = 20/216
      = 5/54

(vi) getting a total of at least 6:

Number of events of getting a total of less than 6 (event of getting a total of 3, 4 or 5) = 10

i.e. (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1) (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1).

Therefore, probability of getting a total of less than 6

               Number of favorable outcomes
P(E6) =     Total number of possible outcome


      = 10/216
      = 5/108

Therefore, probability of getting a total of at least 6 = 1 - P(getting a total of less than 6)

= 1 - 5/108

= (108 - 5)/108

= 103/108

These examples will help us to solve different types of problems based on probability for rolling three dice.

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice









9th Grade Math

From Probability for Rolling Three Dice to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Jan 12, 25 03:23 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  2. 3rd Grade Addition Worksheet | 3-Digit Addition | Word Problems | Ans

    Jan 11, 25 01:06 PM

    3rd Grade Addition Games
    In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping…

    Read More

  3. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  4. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 11, 25 02:48 AM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  5. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More