Point-slope Form

The equation of a line in point-slope form we will learn how to find the equation of the straight line which is inclined at a given angle to the positive direction of x-axis in anticlockwise sense and passes through a given point.

Let the line MN makes an angle θ with the positive direction of x-axis in anticlockwise sense and passes through the point Q (x\(_{1}\), y\(_{1}\)). We have to find the equation of the line MN.

Let P (x, y) be any point on the line MN. But Q (x\(_{1}\), y\(_{1}\)) is also a point on the same line. Therefore, the slope of the line MN = \(\frac{y - y_{1}}{x - x_{1}}\)

Again, the line MN makes an angle θ with the positive direction of the axis of x; hence, the slope of the line = tan θ = m (say).

Therefore, \(\frac{y - y_{1}}{x - x_{1}}\) = m  

⇒ y - y\(_{1}\) = m (x - x\(_{1}\))

The above equation y - y\(_{1}\) = m (x - x\(_{1}\)) is satisfied by the co-ordinates of any point P lying on the line MN.

Therefore, y - y\(_{1}\) = m (x - x\(_{1}\)) represent the equation of the straight line AB.


Solved examples to find the equation of a line in point-slope form:

1. Find the equation of a straight line passing through (-9, 5) and inclined at an angle of 120° with the positive direction of x-axis.

Solution:

First find the slope of the line:

Here slope of the line (m) = tan 120° = tan (90° + 30°) = cot 30° = √3.

Given point (x\(_{1}\), y\(_{1}\)) ≡ (-9, 5)

Therefore, x\(_{1}\) = -9 and y\(_{1}\) = 5

We know that the equation of a straight line passes through a given point (x\(_{1}\), y\(_{1}\)) and has the slope ‘m’ is y - y\(_{1}\) = m (x - x\(_{1}\)).

Therefore, the required equation of the straight lien is y - y\(_{1}\) = m (x - x\(_{1}\))

⇒ y - 5 = √3{x - (-9)}

⇒ y - 5 = √3(x + 9)

⇒ y - 5 = √3x + 9√3

⇒ √3x + 9√3 = y - 5

⇒ √3x - y + 9√3 + 5 = 0

 

2. A straight line passes through the point (2, -3) and makes an angle 135° with the positive direction of the x-axis. Find the equation of the straight line.

Solution:  

The required line makes an angle 135° with the positive direction of the axis of x.

Therefore, the slope of the required line = m= tan 135° = tan (90° + 45°) = - cot 45° = -1.

 Again, the required line passes through the point (2, -3).

We know that the equation of a straight line passes through a given point (x\(_{1}\), y\(_{1}\)) and has the slope ‘m’ is y - y\(_{1}\) = m (x - x\(_{1}\)).

Therefore, the equation of the required straight line is y - (-3) = -1(x -2)

⇒ y + 3 = -x + 2

⇒ x + y + 1 = 0


Notes:

(i) The equation of a straight line of the form y - y\(_{1}\) = m (x - x\(_{1}\)) is called its point-slope form.

(ii) The equation of the line y - y\(_{1}\) = m (x - x\(_{1}\)) is sometimes expressed in the following form:

y - y\(_{1}\) = m(x - x\(_{1}\))

We know that m = tan θ = \(\frac{sin θ}{cos θ}\)

⇒ y - y\(_{1}\) = \(\frac{sin θ}{cos θ}\) (x - x\(_{1}\))

⇒ \(\frac{x - x_{1}}{cos θ}\) = \(\frac{y - y_{1}}{sinθ}\)  = r, Where r = \(\sqrt{(x - x_{1})^{2} + (y - y_{1})^{2}}\) i.e., the distance between the points (x, y) and (x1, y1).

The equation of a straight line as \(\frac{x - x_{1}}{cos θ}\) = \(\frac{y - y_{1}}{sinθ}\) = r is called its Symmetrical form.

 The Straight Line




11 and 12 Grade Math

From Point-slope Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More