Point-slope Form

The equation of a line in point-slope form we will learn how to find the equation of the straight line which is inclined at a given angle to the positive direction of x-axis in anticlockwise sense and passes through a given point.

Let the line MN makes an angle θ with the positive direction of x-axis in anticlockwise sense and passes through the point Q (x\(_{1}\), y\(_{1}\)). We have to find the equation of the line MN.

Let P (x, y) be any point on the line MN. But Q (x\(_{1}\), y\(_{1}\)) is also a point on the same line. Therefore, the slope of the line MN = \(\frac{y - y_{1}}{x - x_{1}}\)

Again, the line MN makes an angle θ with the positive direction of the axis of x; hence, the slope of the line = tan θ = m (say).

Therefore, \(\frac{y - y_{1}}{x - x_{1}}\) = m  

⇒ y - y\(_{1}\) = m (x - x\(_{1}\))

The above equation y - y\(_{1}\) = m (x - x\(_{1}\)) is satisfied by the co-ordinates of any point P lying on the line MN.

Therefore, y - y\(_{1}\) = m (x - x\(_{1}\)) represent the equation of the straight line AB.


Solved examples to find the equation of a line in point-slope form:

1. Find the equation of a straight line passing through (-9, 5) and inclined at an angle of 120° with the positive direction of x-axis.

Solution:

First find the slope of the line:

Here slope of the line (m) = tan 120° = tan (90° + 30°) = cot 30° = √3.

Given point (x\(_{1}\), y\(_{1}\)) ≡ (-9, 5)

Therefore, x\(_{1}\) = -9 and y\(_{1}\) = 5

We know that the equation of a straight line passes through a given point (x\(_{1}\), y\(_{1}\)) and has the slope ‘m’ is y - y\(_{1}\) = m (x - x\(_{1}\)).

Therefore, the required equation of the straight lien is y - y\(_{1}\) = m (x - x\(_{1}\))

⇒ y - 5 = √3{x - (-9)}

⇒ y - 5 = √3(x + 9)

⇒ y - 5 = √3x + 9√3

⇒ √3x + 9√3 = y - 5

⇒ √3x - y + 9√3 + 5 = 0

 

2. A straight line passes through the point (2, -3) and makes an angle 135° with the positive direction of the x-axis. Find the equation of the straight line.

Solution:  

The required line makes an angle 135° with the positive direction of the axis of x.

Therefore, the slope of the required line = m= tan 135° = tan (90° + 45°) = - cot 45° = -1.

 Again, the required line passes through the point (2, -3).

We know that the equation of a straight line passes through a given point (x\(_{1}\), y\(_{1}\)) and has the slope ‘m’ is y - y\(_{1}\) = m (x - x\(_{1}\)).

Therefore, the equation of the required straight line is y - (-3) = -1(x -2)

⇒ y + 3 = -x + 2

⇒ x + y + 1 = 0


Notes:

(i) The equation of a straight line of the form y - y\(_{1}\) = m (x - x\(_{1}\)) is called its point-slope form.

(ii) The equation of the line y - y\(_{1}\) = m (x - x\(_{1}\)) is sometimes expressed in the following form:

y - y\(_{1}\) = m(x - x\(_{1}\))

We know that m = tan θ = \(\frac{sin θ}{cos θ}\)

⇒ y - y\(_{1}\) = \(\frac{sin θ}{cos θ}\) (x - x\(_{1}\))

⇒ \(\frac{x - x_{1}}{cos θ}\) = \(\frac{y - y_{1}}{sinθ}\)  = r, Where r = \(\sqrt{(x - x_{1})^{2} + (y - y_{1})^{2}}\) i.e., the distance between the points (x, y) and (x1, y1).

The equation of a straight line as \(\frac{x - x_{1}}{cos θ}\) = \(\frac{y - y_{1}}{sinθ}\) = r is called its Symmetrical form.

 The Straight Line




11 and 12 Grade Math

From Point-slope Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 20, 24 01:00 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  3. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  4. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 18, 24 02:23 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More