Perimeter and Area of Trapezium

Here we will discuss about the perimeter and area of a trapezium and some of its geometrical properties.

Perimeter and Area of Trapezium

Area of a trapezium (A) = \(\frac{1}{2}\) (sum of parallel sides) × height

                                   = \(\frac{1}{2}\) (a + b) × h

Perimeter of a trapezium (P) = sum of parallel sides + sum of oblique sides

Some geometrical properties of a trapezium:

Geometrical Properties of a Trapezium

In a trapezium PQRS in which sides PQ and RS are parallel, and X and Y are respectively the middle points of PS and QR,

XY = \(\frac{1}{2}\) (PQ + SR)

Area of ∆QSR = area of ∆PSR

Area of ∆PQS = area of ∆PQR


Solved example problem on finding the perimeter and area of a trapezium:

1. In the trapezium PQRS, PQ ∥ RS and ∠PSR = 90°. If PQ = 15 cm, SR = 40 cm and the diagonal PR = 41 cm then find the area of a trapezium.

Find the Area of a Trapezium

Solution:

In the right-angled ∆PSR,

PR\(^{2}\) = PS\(^{2}\) + SR\(^{2}\)

Therefore, 41\(^{2}\) cm \(^{2}\) = PS\(^{2}\) + 40\(^{2}\) cm\(^{2}\)

⟹ PS\(^{2}\) = (41\(^{2}\) - 40\(^{2}\)) cm\(^{2}\)

                      = (41 + 40) (41 – 40) cm\(^{2}\)

                      = 81 × 1 cm\(^{2}\)

                      = 81 cm\(^{2}\)

Therefore, PS = 9 cm

Therefore, area of the trapezium PQRS = \(\frac{1}{2}\) (sum of the parallel sides) × height

                                                         = \(\frac{1}{2}\) (PQ + SR) × PS

                                                         = \(\frac{1}{2}\) (15 + 40) × 9 cm\(^{2}\)

                                                         = \(\frac{1}{2}\) × 55 × 9 cm\(^{2}\)

                                                         = \(\frac{495}{2}\) cm\(^{2}\)

                                                         = 247.5 cm\(^{2}\)

 

2. The parallel sides of a trapezium measure 46 cm and 25 cm. Its other sides are 20 cm and 13 cm. Find the distance between the parallel sides and the area of the trapezium.

Distance between the Parallel Sides of the Trapezium

Solution:

PQRS is a trapezium in which RS ∥PQ, RS = 25 cm and PQ = 46 cm.

Also, PS = 20 cm and QR = 13 cm

Draw RT ∥ SP and RU ⊥ PQ

Then RSPT is a parallelogram.

So, RT = SP = 20 cm and PT = SR = 25 cm

Therefore, TQ = PQ – PT = 46 cm – 25 cm = 21 cm

Area of the ∆RTQ = \(\sqrt{s(s - a)(s - b)(s - c)}\)

where s = \(\frac{\textrm{RT + TQ + QR}}{2}\)

               = \(\frac{\textrm{20 + 21 + 13}}{2}\) cm

               = 27 cm

Now, plug the values in \(\sqrt{s(s - a)(s - b)(s - c)}\).

                       = \(\sqrt{27(27 - 20)(27 - 21)(27 - 13)}\) cm\(^{2}\)

                       = \(\sqrt{27 ∙ 7 ∙ 6 ∙ 14}\) cm\(^{2}\)

                       = \(\sqrt{3 ∙ 3 ∙ 3 ∙ 7 ∙ 3 ∙ 2 ∙ 7 ∙ 2}\) cm\(^{2}\)

                       = \(\sqrt{3^{2} ∙ 3^{2} ∙ 7^{2} ∙ 2^{2}}\) cm\(^{2}\)

                       = 3 ∙ 3 ∙ 7 ∙ 2 cm\(^{2}\)

                       = 126 cm\(^{2}\)

Also, the area of the ∆RTQ = \(\frac{1}{2}\) TQ × RU = \(\frac{1}{2}\) × 21 cm × RU cm\(^{2}\)

Therefore, 126 cm\(^{2}\) = \(\frac{1}{2}\) × 21 cm × RU

or, RU = \(\frac{126 × 2}{21}\) cm

or, RU = 12 cm

Therefore, the distance between the parallel sides = 12 cm

Therefore, area of the trapezium PQRS = \(\frac{1}{2}\) × (SR + PQ) × RU

                                                        = \(\frac{1}{2}\) × (25 + 46) × 12 cm\(^{2}\)

                                                        = \(\frac{1}{2}\) × (25 + 46) × 12 cm\(^{2}\)

                                                        = \(\frac{1}{2}\) × 71 × 12 cm\(^{2}\)

                                                        = \(\frac{852}{2}\) cm\(^{2}\)

                                                        = 426 cm\(^{2}\)


Application on Perimeter and Area of Trapezium:

3. The shape of the cross section of a canal is a trapezium. If the canal is 10 m wide on the top and 6 m wide at the bottom, and the area of its cross section is 72 m2 then find the depth of the canal.

Solution: 

The cross section is the trapezium PQRS in which PQ ∥ RS. Here PQ = 10 m, RS = 6 m, and area of the trapezium PQRS = 72 m2.

Application on Perimeter and Area of Trapezium

Let d be the depth of the canal.

Then, area of the trapezium PQRS = \(\frac{1}{2}\)(PQ + RS)d

⟹ 72 m= \(\frac{1}{2}\)(10 + 6) × d

⟹ d = \(\frac{72 × 2}{16}\) m = 9 m

Therefore, the depth of the canal = 9 m.




9th Grade Math

From Perimeter and Area of Trapezium to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  2. Worksheet on Basic Multiplication Facts | Repeated Addition Fact

    Jan 15, 25 12:40 PM

    Worksheet on Basic Multiplication Facts
    Practice some known facts given in the worksheet on basic multiplication facts. The questions are based on the multiplication fact and repeated addition fact. 1. Write the multiplication fact for each

    Read More

  3. Worksheet on Facts about Multiplication | Multiplication Sum | Answers

    Jan 15, 25 01:24 AM

    Facts about Multiplication Work
    Practice the worksheet on facts about multiplication. We know in multiplication, the number being multiplied is called the multiplicand and the number by which it is being multiplied is called the mul…

    Read More

  4. Facts about Multiplication | Multiplicand | Multiplier | Product

    Jan 15, 25 01:03 AM

    We have learnt multiplication of numbers with 2digit multiplier. Now, we will learn more. Let us know some facts about multiplication. 1. In multiplication, the number being multiplied is called the m…

    Read More

  5. Basic Multiplication Facts | Repeated Addition |Multiplication Process

    Jan 15, 25 12:23 AM

    Understanding Multiplication
    Some basic multiplication facts are needed to follow for multiplying numbers. The repeated addition of the same number is expressed by multiplication in short.

    Read More