Perimeter and Area of a Triangle

Here we will discuss about the perimeter and area of a triangle and some of its geometrical properties.

Perimeter, Area and Altitude of a Triangle:

Perimeter, Area and Altitude of a Triangle

Perimeter of a triangle (P) = Sum of the sides = a + b + c

Semiperimeter of a triangle (s) = \(\frac{1}{2}\)(a + b + c)

Area of a triangle (A) = \(\frac{1}{2}\) × base × altitude = \(\frac{1}{2}\)ah

Here any side can be taken as base; the length of the perpendicular from the corresponding vertex to this side is the altitude.

Area = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\)  (Heron’s formula)

Altitude (h) = \(\frac{\textrm{area}}{\frac{1}{2} \times \textrm{base}}\) = \(\frac{2\triangle}{a}\)


Solved Example on Finding the Perimeter, Semiperimeter and Area

 of a Triangle: 

The sides of a triangle are 4 cm, 5 cm and 7 cm. Find its perimeter, semiperimeter and area.

Solution:

Perimeter of a triangle (P) = Sum of the sides

                                      = a + b + c

                                      = 4 cm + 5 cm + 7 cm

                                      = (4 + 5 + 7) cm

                                      = 16 cm


Semiperimeter of a triangle (s) = \(\frac{1}{2}\)(a + b + c)

                                             = \(\frac{1}{2}\)(4 cm + 5 cm + 7 cm)

                                             = \(\frac{1}{2}\)(4 + 5 + 7) cm

                                             = \(\frac{1}{2}\) × 16 cm

                                             = 8 cm

Area of a triangle = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\) 

                          = \(\sqrt{\textrm{8(8 - 4)(8 - 5)(8 - 7)}}\) cm\(^{2}\)

                          = \(\sqrt{\textrm{8 × 4 × 3 × 1}}\) cm\(^{2}\)

                          = \(\sqrt{96}\) cm\(^{2}\)

                          = \(\sqrt{16 × 6}\) cm\(^{2}\)

                          = 4\(\sqrt{6}\) cm\(^{2}\)

                          = 4 × 2.45 cm\(^{2}\)

                          = 9.8 cm\(^{2}\)


Perimeter, Area and Altitude of an Equilateral Triangle:

Perimeter, Area and Altitude of an Equilateral Triangle

Perimeter of an equilateral triangle (P) = 3 × side = 3a

Area of an equilateral triangle (A) = \(\frac{√3}{4}\) × (side)\(^{2}\) = \(\frac{√3}{4}\) a\(^{2}\)

Altitude of an equilateral triangle (h) = \(\frac{√3}{4}\) a


Trigonometric formula for area of a triangle:

Trigonometric Formula for Area of a Triangle

Area of ∆ABC = \(\frac{1}{2}\) × ca sin B

                    = \(\frac{1}{2}\) × ab sin C

                    = \(\frac{1}{2}\) × bc sin A

(since, ∆ = \(\frac{1}{2}\) ah = \(\frac{1}{2}\) ca ∙ \(\frac{h}{c}\) = \(\frac{1}{2}\) ca sin B, etc.)


Solved Example on Finding the Area of a Triangle: 

In a ∆ABC, BC = 6 cm, AB = 4 cm and ∠ABC = 60°. Find its area.

Solution:

Area of ∆ABC = \(\frac{1}{2}\) ac sin B = \(\frac{1}{2}\) × 6 × 4 sin 60° cm\(^{2}\)

                    = \(\frac{1}{2}\) × 6 × 4 × \(\frac{√3}{2}\) cm\(^{2}\)

                    = 6√3 cm\(^{2}\)

                    = 6 × 1.73 cm\(^{2}\)

                    = 10.38 cm\(^{2}\)


Some geometrical properties of an isosceles triangle:

Geometrical Properties of an Isosceles Triangle

In the isosceles ∆PQR, PQ = PR, QR is the base, and PT is the altitude.

Then, ∠PTR = 90°, QT = TR, PT\(^{2}\) + TR\(^{2}\) = PR\(^{2}\) (by Pythagoras’ theorem)

 ∠PQR = ∠PRQ, ∠QPT = ∠RPT.


Some geometrical properties of a right-angled triangle:

In the right-angled ∆PQR, ∠PQR = 90°; PQ, QR are the sides (forming the right angle) and PR is the hypotenuse.

Geometrical Properties of a Right-angled Triangle

Then, PQ ⊥ QR (therefore, if QR is the base, PQ is the altitude).

PQ\(^{2}\) + QR\(^{2}\) = PR\(^{2}\) (by Pythagoras’ theorem)

Area of the ∆PQR = \(\frac{1}{2}\) ∙ PQ ∙ QR

⟹ PQ ∙ QR = 2 × area of the ∆PQR.

Again, area of the ∆PQR = \(\frac{1}{2}\) ∙ QT ∙ PR

⟹ QT ∙ PR = 2 × area of the ∆PQR.

Therefore, PQ ∙ QR = QT ∙ PR = 2 × Area of the ∆PQR.


Solved Examples on Perimeter and Area of a Triangle:

1. Find the perimeter of an equilateral triangle whose area is equal to that of a triangle with sides 21 cm, 16 cm and 13 cm.

Solution:

Let a side of the equilateral triangle = x.

Then, its area = \(\frac{√3}{4}\) x\(^{2}\)

Now, the area of the other triangle = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\) 

Here, s = \(\frac{1}{2}\) (a + b + c)

           = \(\frac{1}{2}\) (21 + 16 + 13) cm

           = \(\frac{1}{2}\) 50 cm

           = 25 cm

Therefore, area of the other triangle = \(\sqrt{\textrm{25(25 - 21)(25 - 16)(25 - 13)}}\) cm\(^{2}\)

                                                     = \(\sqrt{\textrm{25 ∙ 4 ∙ 9 ∙ 12}}\) cm\(^{2}\)

                                                     = 60\(\sqrt{\textrm{3}}\) cm\(^{2}\)

According to the question, \(\frac{√3}{4}\) x\(^{2}\) = 60\(\sqrt{\textrm{3}}\) cm\(^{2}\)

⟹ x\(^{2}\) = 240 cm\(^{2}\)

Therefore, x = 4√15 cm


2. PQR is an isosceles triangle whose equal sides PQ and PR are 10 cm each, and the base QR measures 8 cm. PM is the perpendicular from P to QR and X is a point on PM such that ∠QXR = 90°. Find the area of the shaded portion.

Solved Examples on Perimeter and Area of a Triangle

Solution:

Since PQR is an isosceles triangle and PM ⊥ QR, QR is bisected at M.

Therefore, QM = MR = \(\frac{1}{2}\) QR = \(\frac{1}{2}\) × 8 cm = 4 cm

Now, PQ\(^{2}\) = PM\(^{2}\) + QM\(^{2}\) (by Pythagoras’ theorem)

Therefore, 10\(^{2}\) cm\(^{2}\) = PM\(^{2}\) + 4\(^{2}\) cm\(^{2}\)

or, PM\(^{2}\) = 10\(^{2}\) cm\(^{2}\) - 4\(^{2}\) cm\(^{2}\)

                       = 100 cm\(^{2}\) - 16 cm\(^{2}\)

                       = (100 - 16) cm\(^{2}\)

                       = 84 cm\(^{2}\)

Therefore, PM\(^{2}\) = 2√21 cm

Therefore, area of the ∆PQR = \(\frac{1}{2}\) × base × altitude

                                         = \(\frac{1}{2}\) × QR × PM

                                         = (\(\frac{1}{2}\) × 8 × 2√21) cm\(^{2}\)

                                         = 8√21) cm\(^{2}\)

From geometry, ∆XMQ ≅ ∆XMR (SAS criterion)

We get, XQ =XR = a (say)

Therefore, from the right-angled ∆QXR, a\(^{2}\) + a\(^{2}\) = QR\(^{2}\)

or, 2a\(^{2}\) = 8\(^{2}\) cm\(^{2}\)

or, 2a\(^{2}\) = 64 cm\(^{2}\)

or, a\(^{2}\) = 32 cm\(^{2}\)

Therefore, a = 4√2 cm

Again, area of the ∆XQR = \(\frac{1}{2}\) × XQ × XR

                                    = \(\frac{1}{2}\) × a × a

                                    = \(\frac{1}{2}\) × 4√2 cm  × 4√2 cm

                                    = \(\frac{1}{2}\) × (4√2)\(^{2}\) cm\(^{2}\)

                                    = \(\frac{1}{2}\) × 32 cm\(^{2}\)  

                                    = 16 cm\(^{2}\)  

Therefore, area of the shaded portion = area of the ∆PQR - area of the ∆XQR

                                                      = (8√21) cm\(^{2}\) - 16 cm\(^{2}\)

                                                      = (8√21 - 16) cm\(^{2}\)  

                                                      = 8(√21 - 2) cm\(^{2}\)  

                                                      = 8 × 2.58 cm\(^{2}\)  

                                                      = 20.64 cm\(^{2}\)  






9th Grade Math

From Perimeter and Area of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Yesterday, Today and Tomorrow | Sequence of the Week-days

    Nov 25, 24 01:18 AM

    Practice the worksheet on yesterday, today and tomorrow, the questions are based on the sequence of the week-days, their names and order. We know, the present day is today, the day before today

    Read More

  2. Yesterday, Today and Tomorrow | Name of each Day of the Week

    Nov 25, 24 01:09 AM

    We will learn the relation between yesterday, today and tomorrow. There are seven days in a week. We know the name of each day of the week. Sunday is known as the first day of the week.

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Nov 25, 24 12:48 AM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Nov 25, 24 12:17 AM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 24, 24 11:01 PM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More