Parametric Equation of the Hyperbola

We will learn in the simplest way how to find the parametric equations of the hyperbola.

The circle described on the transverse axis of a hyperbola as diameter is called its Auxiliary Circle.

If \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is a hyperbola, then its auxiliary circle is x\(^{2}\) + y\(^{2}\) = a\(^{2}\).

Let the equation of the hyperbola be, \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1  

Parametric Equation of the Hyperbola

The transverse axis of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is AA’ and its length = 2a. Clearly, the equation of the circle described on AA’ as diameter is x\(^{2}\) + y\(^{2}\) = a\(^{2}\) (since the centre of the circle is the centre C (0, 0) of the hyperbola).

Therefore, the equation of the auxiliary circle of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is, x\(^{2}\) + y\(^{2}\) = a\(^{2}\)

Let P (x, y) be any point on the equation of the hyperbola be \(\frac{x^{2}}{a^{2}}\) -\(\frac{y^{2}}{b^{2}}\) = 1

Now from P draw PM perpendicular to the transverse axis of the hyperbola. Again take a point Q on the auxiliary circle x\(^{2}\) + y\(^{2}\) = a\(^{2}\) such that ∠CQM = 90°.

Join the point C and Q. The length of QC = a. Again, let ∠MCQ = θ. The angle ∠MCQ = θ is called the eccentric angle of the point P on the hyperbola.

Now from the right-angled  ∆CQM we get,

\(\frac{CQ}{MC}\) = cos θ          

or, a/MC  =   a/sec θ       

or, MC  = a sec θ

Therefore, the abscissa of P = MC = x = a sec θ

Since the point P (x, y) lies on the hyperbola \(\frac{x^{2}}{a^{2}}\) -\(\frac{y^{2}}{b^{2}}\) = 1 hence,

\(\frac{a^{2}sec^{2} θ }{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, (Since, x = a sec θ)

\(\frac{y^{2}}{b^{2}}\) = sec\(^{2}\) θ – 1

\(\frac{y^{2}}{b^{2}}\) = tan\(^{2}\) θ

y\(^{2}\) = b\(^{2}\) tan\(^{2}\) θ

y = b tan θ

Hence, the co-ordinates of P are (a sec θ, b tan θ).

Therefore, for all values of θ the point P (a sec θ, b tan θ) always lies on the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\)  = 1  

Thus, the co-ordinates of the point having eccentric angle θ can be written as (a sec θ, b tan θ). Here (a sec θ, b tan θ) are known as the parametric co-ordinates of the point P.

The equations x = a sec θ, y = b tan θ taken together are called the parametric equations of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1; where θ is parameter (θ is called the eccentric angle of the point P).


Solved example to find the parametric equations of a hyperbola:

1. Find the parametric co-ordinates of the point (8, 3√3) on the hyperbola 9x\(^{2}\) - 16y\(^{2}\) = 144.

Solution:     

The given equation of the hyperbola is 9x2 - 16y2 = 144

⇒ \(\frac{x^{2}}{16}\) - \(\frac{y^{2}}{9}\) = 1

⇒ \(\frac{x^{2}}{4^{2}}\) - \(\frac{y^{2}}{3^{2}}\) = 1, which is the form of \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1.  

Therefore,

a\(^{2}\) = 4\(^{2}\) 

⇒ a = 4 and   

b\(^{2}\) = 3\(^{2}\)     

⇒ b = 3.

Therefore, we can take the parametric co-ordinates of the point (8, 3√3) as (4 sec θ, 3 tan θ).

Thus we have, 4 sec θ = 8      

⇒ sec θ = 2        

⇒ θ = 60°

We know that for all values of θ the point (a sec θ, b tan θ) always lies on the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\)  = 1  

Therefore, (a sec θ, b tan θ) are known as the parametric co-ordinates of the point.

Therefore, the parametric co-ordinates of the point (8, 3√3)   are (4 sec 60°, 3 tan 60°).

 

2. P (a sec θ, a tan θ) is a variable point on the hyperbola x\(^{2}\) - y\(^{2}\) = a\(^{2}\), and M (2a, 0) is a fixed point. Prove that the locus of the middle point of AP is a rectangular hyperbola.

Solution:        

Let (h, k) be the middle point of the line segment AM.

Therefore, h = \(\frac{a sec θ + 2a}{2}\)   

⇒ a sec θ = 2(h - a)

(a sec θ)\(^{2}\) = [2(h - a)]\(^{2}\) …………………. (i)

and k = \(\frac{a tan θ}{2}\)

⇒ a tan θ = 2k

(a tan θ)\(^{2}\) = (2k)\(^{2}\) …………………. (ii)

Now form (i) - (ii), we get,

(a sec θ)\(^{2}\) - (a tan θ)\(^{2}\) = [2(h - a)]\(^{2}\) - (2k)\(^{2}\)

⇒ a\(^{2}\)(sec\(^{2}\) θ - tan\(^{2}\) θ) = 4(h - a)\(^{2}\) - 4k\(^{2}\)

⇒ (h - a)\(^{2}\) - k\(^{2}\) = \(\frac{a^{2}}{4}\).

Therefore, the equation to the locus of (h, k) is (x - a)\(^{2}\) - y\(^{2}\) = \(\frac{a^{2}}{4}\), which is the equation of a rectangular hyperbola.

The Hyperbola





11 and 12 Grade Math 

From Parametric Equation of the Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:20 AM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  2. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  3. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  4. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More

  5. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More