Order of a Surd

The order of a surd indicates the index of root to be extracted.

In \(\sqrt[n]{a}\), n is called the order of the surd and a is called the radicand.

For example: The order of the surd \(\sqrt[5]{z}\) is 5.

(i) A surd with index of root 2 is called a second order surd or quadratic surd.

The surds which have the indices of root 2 are called as second order surds or quadratic surds. For example√2, √3, √5, √7, √x are the surds of order 2.

Example: √2, √5, √10, √a, √m, √x, √(x + 1) are second order surd or quadratic surd (since the indices of roots are 2).

(ii) A surd with index of root 3 is called a third order surd or cubic surd.

If x is a positive integer with nth root, then  is a surd of nth order when the value of  is irrational. In  expression n is the order of surd and x is called as radicand. For example  is surd of order 3.

The surds which have the indices of cube roots are called as third order surds or cubic surds. For example ∛2, ∛3, ∛10, ∛17, ∛x are the surds of order 3 or cubic surds.

Example: ∛2, ∛5, ∛7, ∛15, ∛100, ∛a, ∛m, ∛x, ∛(x - 1) are third order surd or cubic surd (since the indices of roots are 3).


(iii) A surd with index of root 4 is called a fourth order surd.

The surds which have the indices of four roots are called as forth order surds or bi-quadratic surds.

For example ∜2, ∜4, ∜9, ∜20, ∜x are the surds of order 4.

Example: \(\sqrt[4]{2}\), \(\sqrt[4]{3}\), \(\sqrt[4]{9}\), \(\sqrt[4]{17}\), \(\sqrt[4]{70}\), \(\sqrt[4]{a}\), \(\sqrt[4]{m}\), \(\sqrt[4]{x}\), \(\sqrt[4]{x - 1}\) are third order surd or cubic surd (since the indices of roots are 4).


(iv) In general, a surd with index of root n is called a n\(^{th}\) order surd.

Similarly the surds which have the indices of n roots are nth order surds. \(\sqrt[n]{2}\), \(\sqrt[n]{17}\), \(\sqrt[n]{19}\), \(\sqrt[n]{x}\) are the surds of order n.

Example: \(\sqrt[n]{2}\), \(\sqrt[n]{3}\), \(\sqrt[n]{9}\), \(\sqrt[n]{17}\), \(\sqrt[n]{70}\), \(\sqrt[n]{a}\), \(\sqrt[n]{m}\), \(\sqrt[n]{x}\), \(\sqrt[n]{x - 1}\) are nth order surd (since the indices of roots are n).


Problem on finding the order of a surd:

Express ∛4 as a surd of order 12.

Solution:

Now, ∛4

= 4\(^{1/3}\)

= \(4^{\frac{1 × 4}{3 × 4}}\), [Since, we are to convert order 3 into 12, so we multiply both numerator and denominator of 1/3 by 4]

= 4\(^{4/12}\)

= \(\sqrt[12]{4^{4}}\)

= \(\sqrt[12]{256}\)


Problems on finding the order of surds:

1. Express √2 as a surd of order 6.

Solution:

√2 = 2\(^{1/2}\)

     = \(2^{\frac{1 × 3}{2 × 3}}\)

     = \(2^{\frac{3}{6}}\)

     = 8\(^{1/6}\)

     = \(\sqrt[6]{8}\)

So \(\sqrt[6]{8}\) is a surd of order 6.


2. Express ∛3 as a surd of order 9.

Solution:

∛3 = 3\(^{1/3}\)

     = \(3^{\frac{1 × 3}{3 × 3}}\)

     = \(3^{\frac{3}{9}}\)

     = 27\(^{1/9}\)

     = \(\sqrt[9]{27}\)

So \(\sqrt[9]{27}\) is a surd of order 9.


3. Simplify the surd  ∜25 to a quadratic surd.

Solution:

 ∜25 = 25\(^{1/4}\)

= \(5^{\frac{2 × 1}{4}}\)

= \(3^{\frac{1}{2}}\)

= \(\sqrt[2]{5}\)

= √5

So √5 is a surd of order 2 or a quadratic surd.














11 and 12 Grade Math

From Order of a Surd to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More