Multiplication of Two Matrices

Here we will learn the process of Multiplication of two matrices.

Two matrices A and B are conformable (compatible) for multiplication

(i) AB if the number of columns in A = the number of rows in B

(ii) BA if the number of columns in B = the number of rows in A.


To find the product AB when A and B are conformable for multiplication AB

Let A = \(\begin{bmatrix} a & b\\ c & d \end{bmatrix}\) and B = \(\begin{bmatrix} x & y & z\\ l & m & n \end{bmatrix}\)

A is a 2 × 2 matrix and B is a 2 × 3 matrix.

Therefore, the number of columns in A = the number of rows in B = 2.

Therefore, AB can be found because A, B are conformable for multiplication AB.

The product AB is defined as

AB = \(\begin{bmatrix} a & b\\ c & d \end{bmatrix}\) \(\begin{bmatrix} x & y & z\\ l & m & n \end{bmatrix}\)

   = \(\begin{bmatrix} a(x) + b(l) & a(y) + b(m) & a(z) + b(n)\\c(x) +d(l) & c(y) + d(m) & c(z) + d(n) \end{bmatrix}\)

Product of Two Matrices
Multiplication of Two Matrices

Clearly, the product BA is not possible because the number of columns in B(=3) ≠ the number of rows in A(=2).

Note: Given two matrices A and B, AB may be found but BA may not be found. It is also possible that neither AB nor BA can be found, or both AB and BA can be found.


Solved Example on Multiplication of Two Matrices:

1. Let A = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) and B = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\). Find AB and BA. Is AB = BA?

Solution:

Here, A is of the order 2 × 2 and B is of the order 2 × 2.

So, the number of columns in A = the number of rows in B. Hence, AB can be found. Also, the number of columns in B = the number of rows in A. Hence, BA can also found.

Now,

AB = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\)

     = \(\begin{bmatrix} 2 × 1 + 5 × 4 & 2 × 1 + 5 × (-2)\\ (-1) × 1 + 3 × 4 & (-1) × 1 + 3 × (-2) \end{bmatrix}\) 

     = \(\begin{bmatrix} 22 & -8\\ 11 & -7 \end{bmatrix}\)

BA = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\)

     = \(\begin{bmatrix} 1 × 2 + 1 × (-1) & 1 × 5 + 1 × 3\\ 4 × 2 + (-2) × (-1) & 4 × 5 + (-2) × 3 \end{bmatrix}\) 

     = \(\begin{bmatrix} 1 & 8\\ 10 & 14 \end{bmatrix}\).


Clearly, \(\begin{bmatrix} 22 & -8\\ 11 & -7 \end{bmatrix}\) ≠ \(\begin{bmatrix} 1 & 8\\ 10 & 14 \end{bmatrix}\).

Therefore, AB ≠ BA.


2. Let X = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) and I = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\). Prove that XI = IX = A.

Solution:

XI = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)

    = \(\begin{bmatrix} 11 × 1 + 4 × 0 & 11 × 0 + 4 × 1\\ -5 × 1 + 2 × 0 & -5 × 0 + 2 × 1 \end{bmatrix}\) 

    = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) = X

IX = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)\(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) 

    = \(\begin{bmatrix} 1 × 11 + 0 × (-5) & 1 × 4 + 0 × 2\\ 0 × 11 + 1 × (-5) & 0 × 4 + 1 × 2 \end{bmatrix}\) 

    = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) = X


Therefore, AI = IA =A. (Proved)





10th Grade Math

From Multiplication of Two Matrices to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More