Multiplication of Surds

In multiplication of surds we will learn how to find the product of two or more surds.

Follow the following steps to find the multiplication of two or more surds.

Step I: Express each surd in its simplest mixed form.

Step II: Observe whether the given surds are of the same order or not.

Step III: If they are of the same order then the required product is obtained by multiplying the product of the rational co-efficient by the product of surd-factors.

If they are of different orders then the product is obtained by the above method after reducing them to surds of the same order.

If different order surds have the same base then their product can easily be obtained using the laws of indices.

Multiplication of surds can be obtained by simply following the law of indices.

\(\sqrt[a]{x}\times \sqrt[b]{x} = x^{\frac{1}{a}}\times x^{\frac{1}{b}} = x^{(\frac{1}{a} + \frac{1}{b})}\)

From the above equation we can understand that if surds of rational number x are in different orders, then the product of those surds can be obtained by the sum of indices of the surds. Here surds of rational number x are in order a and b, so the indices of the surds are \(\frac{1}{a}\) and \(\frac{1}{b}\) and after multiplication the result index of x is \({(\frac{1}{a} + \frac{1}{b})}\).

If the surds are in same order, then multiplication of surds can be done by following rule.

\(\sqrt[a]{x}\times \sqrt[a]{y} = \sqrt[a]{xy}\)

From the above equation we can understand that if two or more rational numbers like x and y are in a same order a, then product of those surds can be obtained by product of the radicands or rational numbers.

If the surds are not in same order, we can express them in same order to obtain the result of a multiplication problem. But first we should try to express the surds in simplest forms and compare with other surds that they are similar surds or equiradical or dissimilar. Whatever the surds are, we can multiply the rational coefficients. Products of surds can rational or irrational, depending upon the situations.

Like \(\sqrt[2]{3}\)×\(\sqrt[2]{3}\) = 3, so the product of two similar surds is rational number.

But \(\sqrt[2]{3}\)×\(\sqrt[3]{3}\) = \(3^{(\frac{1}{2} + \frac{1}{3})}\) = \(3^{\frac{5}{6}}\)


Now we will solve some problems on multiplication of surds to understand more on this.

Examples of multiplication of surds:

1. Find the product of \(5\sqrt[2]{5}\) and \(\sqrt[2]{45}\).

Solution:

\(5\sqrt[2]{5}\) × \(\sqrt[2]{45}\) = \(5\sqrt[2]{5\times 5\times 3\times 3}\) = 5 × 5 × 3 = 75.

2. Find the product of 7∜4 and 5∜3

Solution:

 The product of 7∜4 and 5∜3

= (7∜4) × (5∜3)

= (7 × 5) × (∜4 × ∜3)

= 35 × \(\sqrt[4]{4\cdot 3}\)

= 35 × ∜12

= 35∜12


3. Find the product of \(3\sqrt[2]{2}\) and \(4\sqrt[6]{3}\).

Solution:

\(3\sqrt[2]{2}\) and \(4\sqrt[6]{3}\) are in order 2 and 6. As the LCM of 2 and 6 is 6, we can convert \(3\sqrt[2]{2}\) into a surd of order 6.

\(3\sqrt[2]{2}\) × \(4\sqrt[6]{3}\) = \(3\times 2^{\frac{1}{2}}\) × \(4\sqrt[6]{3}\)

= \(3\times 2^{\frac{3}{6}}\) × \(4\sqrt[6]{3}\)

= \(3\times 8^{\frac{1}{6}}\) × \(4\sqrt[6]{3}\)

= \(3\sqrt[6]{8}\) × \(4\sqrt[6]{3}\)

= 3 × 4 × \(\sqrt[6]{8}\) × \(\sqrt[6]{3}\)

= 12 × \(\sqrt[6]{8\times 3}\)

= \(12\sqrt[6]{24}\).


4. Find the product of 2√12, 7√20 and √32

Solution:

The product of 2√12, 7√20 and √32

= (2√12) × (7√20) × (√32)

= (2\(\sqrt{2\cdot 2\cdot 3}\)) × (7\(\sqrt{2\cdot 2\cdot 5}\)) × (\(\sqrt{2\cdot 2\cdot 2\cdot 2\cdot 2}\))

= (4√3) × (14√5) × (4√2)

= (4 × 14 × 4) × (√3 × √5 × √2)

= 224 × \(\sqrt{3\cdot 5\cdot 2}\)

= 224 × √30

= 224√30


5. Find the product of \(3\sqrt[2]{12}\), \(\sqrt[2]{98}\) and \(5\sqrt[2]{27}\).

Solution:

\(3\sqrt[2]{12}\) × \(\sqrt[2]{98}\) × \(5\sqrt[2]{27}\)

= \(3\sqrt[2]{2\times 2\times 3}\) × \(\sqrt[2]{7\times 7\times 2}\) × \(5\sqrt[2]{3\times 3\times 3}\)

= \(12\sqrt[2]{3}\) × \(7\sqrt[2]{2}\) × \(15\sqrt[2]{3}\)

= 12 × 7 × 15 × \(\sqrt[2]{3\times 2\times 3}\)

= 1260 × 3 × \(\sqrt[2]{2}\)

= \(3780\sqrt[2]{2}\).


6. Simplify: 2√2 × 7∛5 × 3∜3.

Solution:

3∜3 × 2√2 × 7∛5

The orders of the given surds are 4, 2, 3 respectively and L.C.M. of 4, 2 and 3 is 12.

∜3 = 3\(^{1/4}\) = 3\(^{3/12}\) = \(\sqrt[12]{3^{3}}\) = \(\sqrt[12]{27}\)

√2 = 2\(^{1/2}\) = 2\(^{6/12}\) = \(\sqrt[12]{2^{6}}\) = \(\sqrt[12]{64}\)

∛5 = 5\(^{1/3}\) = 5\(^{4/12}\) = \(\sqrt[12]{5^{4}}\) = \(\sqrt[12]{625}\)

Therefore, the given expression 3∜3 × 2√2 × 7∛5

= (3 × 2 × 7) × (∜3 × √2 × ∛5)

= 42 × (\(\sqrt[12]{27}\) × \(\sqrt[12]{64}\) × \(\sqrt[12]{625}\))

= 42 × (\(\sqrt[12]{27 × 64 × 625}\))

= 42 × (\(\sqrt[12]{1080000}\))

= 42\(\sqrt[12]{1080000}\)

 

7. Find the product of \(3\sqrt[2]{2}\), \(5\sqrt[3]{4}\) and \(2\sqrt[4]{8}\).

Solution:

\(3\sqrt[2]{2}\) × \(5\sqrt[3]{4}\) × \(2\sqrt[4]{8}\)

= 3 × \(2^{\frac{1}{2}}\) × 5 × \(\sqrt[3]{2^{2}}\) × 2 × \(\sqrt[4]{2^{3}}\)

= 3 × 5 × 2 × \(2^{\frac{1}{2}}\) × \(2^{\frac{2}{3}}\) × \(2^{\frac{3}{4}}\)

= 30 × \(2^{(\frac{1}{2} + \frac{2}{3} + \frac{3}{4})}\)

= 30 × \(2^{\frac{23}{12}}\)

= \(30\sqrt[12]{2^{23}}\)

= \(30\sqrt[12]{2^{(12 + 11)}}\)

= 30 × \(2\sqrt[12]{2^{11}}\)

= \(60\sqrt[12]{2048}\).


8. Simplify: 4√3 × 2∛9 × 5∜27

Solution:

4√3 × 2∛9 × 5∜27

= (4 × 2 × 5) × (3\(^{1/2}\) × 9\(^{1/3}\) × 27\(^{1/4}\))

= 40 × (3\(^{1/2}\) × 3\(^{2/3}\) × 3\(^{3/4}\))

= 40 × 3\(^{1/2 + 2/3 + 3/4}\)

= 40 × 3\(^{23/12}\)

= 40 × \(\sqrt[12]{3^{23}}\)

= 40 × \(\sqrt[12]{3^{12}\cdot 3^{11}}\)

= 40 × 3\(\sqrt[12]{3^{11}}\)

= 120\(\sqrt[12]{177147}\)


9. Find the product of \(\sqrt[2]{x}\), \(\sqrt[4]{x}\) and \(\sqrt[2]{y}\).

Solution:

\(\sqrt[2]{x}\) × \(\sqrt[4]{x}\) × \(\sqrt[2]{y}\)

As the surds are in order 2, 4 and 2, their LCM is 4, we need to convert \(\sqrt[2]{x}\) and \(\sqrt[2]{y}\) into order 4.

= \(x^{\frac{2}{4}}\) × \(x^{\frac{1}{4}}\) × \(y^{\frac{2}{4}}\)

= \(x^{(\frac{2}{4}+\frac{1}{4})}\) × \(\sqrt[4]{y^{2}}\)

= \(x^{\frac{3}{4}}\) × \(\sqrt[4]{y^{2}}\)

= \(\sqrt[4]{x^{3}}\) × \(\sqrt[4]{y^{2}}\)

= \(\sqrt[4]{x^{3}y^{2}}\).






11 and 12 Grade Math

From Multiplication of Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More